Economics 101A (Lecture 22, Revised)

Stefano DellaVigna

November 18, 2003

Outline

- 1. Monopoly II
- 2. Price Discrimination
- 3. Oligopoly?
- 4. Game Theory

1 Monopoly II

- Welfare consequences of monopoly
 - Too little production
 - Too high prices

• Graphical analysis

2 Price Discrimination

- Nicholson, Ch. 18, pp. 508-515.
- Restriction of contract space:
 - So far, one price for all consumers. But:
 - Can sell at different prices to differing consumers (first degree or perfect price discrimination).

 Self-selection: Prices as function of quantity purchased, equal across people (second degree price discrimination).

 Segmented markets: equal per-unit prices across units (third degree price discrimination).

2.1 Perfect price discimination

- Nicholson, Ch. 14, pp. 508-510
- Monopolist decides price and quantity consumer-byconsumer
- What does it charge? Graphically,

- Welfare:
 - gain in efficiency;
 - all the surplus goes to firm

2.2 Self-selection

- Nicholson, Ch. 14, pp. 513-515
- Perfect price discrimination not legal
- Cannot charge different prices for same quantity to A and B
- Partial Solution:
 - offer different quantities of goods at different prices;
 - allow consumers to choose quantity desired

• Examples (very important!):

bundling of goods (xeroxing machines and toner);

- quantity discounts

- two-part tariffs (cell phones)

- Example:
- Consumer A has value \$1 for up to 100 photocopies per month
- Consumer B has value \$.50 for up to 1,000 photocopies per month

- Firm maximizes profits by selling (for ε small):
 - 100-photocopies for \$100- ε
 - 1,000 photocopies for \$500- ε

• Problem if resale!

2.3 Segmented markets

- Nicholson, Ch. 14, pp. 510-513
- Firm now separates markets
- Within market, charges constant per-unit price

- Example:
 - cost function TC(y) = cy.
 - Market A: inverse demand dunction $p_A(y)$ or
 - Market B: inverse dunction $p_B(y)$

• Profit maximization problem:

 $\max_{y_A, y_B} p_A\left(y_A\right) y_A + p_B\left(y_B\right) y_B - c\left(y_A + y_B\right)$

• First order conditions:

• Elasticity interpretation

• Firm charges more to markets with lower elasticity

- Examples:
 - student discounts

- prices of goods across countries:
 - * airlines (US and Europe)
 - * books (US and UK)
 - * cars (Europe)

• As markets integrate (Internet), less possible to do the latter.

3 Oligopoly?

- Extremes:
 - Perfect competition
 - Monopoly
- Oligopoly if there are n (two, five...) firms

- Examples:
 - soft drinks: Coke, Pepsi;
 - cellular phones: Sprint, AT&T, Cingular,...
 - car dealers

• Firm *i* maximizes:

$$\max_{y_i} p\left(y_i + y_{-i}\right) y_i - c\left(y_i\right)$$
 where $y_{-i} = \sum_{j \neq i} y_j.$

• First order condition with respect to y_i :

$$p'_{Y}(y_{i}+y_{-i})y_{i}+p-c'_{Y}(y_{i})=0.$$

- Problem: what is the value of y_{-i} ?
 - simultaneous determination?
 - can firms -i observe y_i ?
- Need to study strategic interaction

4 Game Theory

- Nicholson, Ch. 10, pp. 246-255.
- Unfortunate name
- Game theory: study of decisions when payoff of player *i* depends on actions of player *j*.

- Brief history:
 - von Neuman and Morgenstern, Theory of Games and Economic Behavior (1944)
 - Nash, Non-cooperative Games (1951)
 - ...
 - Nobel Prize to Nash, Harsanyi (Berkeley), Selten (1994)

• Definitions:

– Players: 1, ..., I

– Strategy $s_i \in S_i$

– Payoffs: $U_i(s_i, s_{-i})$

• Example: Prisoner's Dilemma

$$-I=2$$

$$- s_i = \{D, ND\}$$

$$\begin{array}{cccccc} 1 \ \backslash \ 2 & D & ND \\ D & -4, -4 & -1, -5 \\ ND & -5, -1 & -2, -2 \end{array}$$

• What prediction?

• Maximize sum of payoffs

• Choose dominant strategies

• Battle of the Sexes game:

$He \setminus She$	Ballet	Football
Ballet	2, 1	0,0
Football	0 , 0	1,2

- No dominant strategies
- Nash Equilibrium.
- Strategies $s^* = \left(s^*_i, s^*_{-i}\right)$ are a Nash Equilibrium if $U_i\left(s_i^*, s_{-i}^*\right) \ge U_i\left(s_i, s_{-i}^*\right)$

for all $s_i \in S_i$ and i = 1, ..., I

5 Next lecture

- More game theory
- Back to oligopoly:
 - Cournot
 - Bertrand