Economics 101A (Lecture 24, Revised)

Stefano DellaVigna

November 25, 2003

Outline

- 1. Second-price Auction
- 2. Dynamic Games

1 Second-price Auction

- Sealed-bid auction
- Highest bidder wins object
- Price paid is second highest price

- Two individuals: I = 2
- Strategy s_i is bid b_i
- Each individual knows value v_i

• Payoff for individual i is

$$u_i(b_i, b_{-i}) = \begin{cases} v_i - b_{-i} & \text{if } b_i > b_{-i} \\ (v_i - b_{-i})/2 & \text{if } b_i = b_{-i} \\ 0 & \text{if } b_i < b_{-i} \end{cases}$$

- Show: weakly dominant to set $b_i^* = v_i$
- To show:

$$u_i(v_i, b_{-i}) \ge u_i(b_i, b_{-i})$$

for all b_i , for all b_{-i} , and for i = 1, 2.

- 1. Assume $b_{-i} > v_i$
 - $u_i(v_i, b_{-i}) = 0 = u_i(b_i, b_{-i})$ for any $b_i < b_{-i}$ [REVISED]
 - $u_i(b_{-i}, b_{-i}) = (v_i b_{-i})/2 < 0$ [REVISED]
 - $u_i(b_i, b_{-i}) = (b_i b_{-i}) < 0$ for any $b_i > b_{-i}$ [REVISED]

2. Assume now $b_{-i} = v_i$

3. Assume now $b_{-i} < v_i$

2 Dynamic Games

- Nicholson, Ch. 10, pp. 256-259.
- Dynamic games: one player plays after the other
- Decision trees
 - Decision nodes
 - Strategy is a plan of action at each decision node

• Example: battle of the sexes game

She \setminus He	Ballet	Football
Ballet	2, 1	0, 0
Football	0, 0	1,2

• Dynamic version: she plays first

- Subgame-perfect equilibrium. At each node of the tree, the player chooses the strategy with the highest payoff, given the other players' strategy
- Backward induction. Find optimal action in last period and then work backward

• Solution

• Example 2: Entry Game

$1 \setminus 2$	Enter	Do not Enter
Enter	-1, -1	10,0
Do not Enter	0, 5	0,0

• Exercise. Dynamic version.

• Coordination games solved if one player plays first

- Can use this to study finitely repeated games
- Suppose we play the prisoner's dilemma game ten times.

$$\begin{array}{ccccccc} 1 & 1 & 2 & D & ND \\ D & -4, -4 & -1, -5 \\ ND & -5, -1 & -2, -2 \end{array}$$

• What is the subgame perfect equilibrium?