Economics 101A (Lecture 24, Revised)

Stefano DellaVigna

November 25, 2003

Outline

1. Second-price Auction

2. Dynamic Games

1 Second-price Auction

- Sealed-bid auction
- Highest bidder wins object
- Price paid is second highest price
- Two individuals: $I=2$
- Strategy s_{i} is bid b_{i}
- Each individual knows value v_{i}
- Payoff for individual i is

$$
u_{i}\left(b_{i}, b_{-i}\right)=\left\{\begin{array}{cll}
v_{i}-b_{-i} & \text { if } & b_{i}>b_{-i} \\
\left(v_{i}-b_{-i}\right) / 2 & \text { if } & b_{i}=b_{-i} \\
0 & \text { if } & b_{i}<b_{-i}
\end{array}\right.
$$

- Show: weakly dominant to set $b_{i}^{*}=v_{i}$
- To show:

$$
u_{i}\left(v_{i}, b_{-i}\right) \geq u_{i}\left(b_{i}, b_{-i}\right)
$$

for all b_{i}, for all b_{-i}, and for $i=1,2$.

1. Assume $b_{-i}>v_{i}$

$$
\begin{aligned}
& \text { - } u_{i}\left(v_{i}, b_{-i}\right)=0=u_{i}\left(b_{i}, b_{-i}\right) \text { for any } b_{i}<b_{-i} \\
& \text { [REVISED] }
\end{aligned}
$$

- $u_{i}\left(b_{-i}, b_{-i}\right)=\left(v_{i}-b_{-i}\right) / 2<0$ [REVISED]
- $u_{i}\left(b_{i}, b_{-i}\right)=\left(b_{i}-b_{-i}\right)<0$ for any $b_{i}>b_{-i}$ [REVISED]

2. Assume now $b_{-i}=v_{i}$

3. Assume now $b_{-i}<v_{i}$

2 Dynamic Games

- Nicholson, Ch. 10, pp. 256-259.
- Dynamic games: one player plays after the other
- Decision trees
- Decision nodes
- Strategy is a plan of action at each decision node
- Example: battle of the sexes game

$$
\begin{array}{ccc}
\text { She } \backslash \text { He } & \text { Ballet } & \text { Football } \\
\text { Ballet } & 2,1 & 0,0 \\
\text { Football } & 0,0 & 1,2
\end{array}
$$

- Dynamic version: she plays first
- Subgame-perfect equilibrium. At each node of the tree, the player chooses the strategy with the highest payoff, given the other players' strategy
- Backward induction. Find optimal action in last period and then work backward
- Solution
- Example 2: Entry Game

$$
\begin{array}{ccc}
1 \backslash 2 & \text { Enter } & \text { Do not Enter } \\
\text { Enter } & -1,-1 & 10,0 \\
\text { Do not Enter } & 0,5 & 0,0
\end{array}
$$

- Exercise. Dynamic version.
- Coordination games solved if one player plays first
- Can use this to study finitely repeated games
- Suppose we play the prisoner's dilemma game ten times.

$$
\begin{array}{ccc}
1 \backslash 2 & D & N D \\
D & -4,-4 & -1,-5 \\
N D & -5,-1 & -2,-2
\end{array}
$$

- What is the subgame perfect equilibrium?

