Economics 101A (Lecture 26, Revised)

Stefano DellaVigna

December 4, 2003

Outline

\author{

1. Barter
}
2. Walrasian Equilibrium
3. Example

4. An Example of Excellent Economics

5. Unsolicited advice

1 Barter

- Consumers can trade goods 1 and 2
- Allocation $\left(\left(x_{1}^{1 *}, x_{2}^{1 *}\right),\left(x_{1}^{2 *}, x_{2}^{2 *}\right)\right)$ can be outcome of barter if:
- Individual rationality.

$$
u_{i}\left(x_{1}^{i *}, x_{2}^{i *}\right) \geq u_{i}\left(\omega_{1}^{i}, \omega_{2}^{i}\right) \text { for all } i
$$

- Pareto Efficiency. There is no allocation $\left(\left(\hat{x}_{1}^{1}, \hat{x}_{2}^{1}\right),\left(\hat{x}_{1}^{2}, \hat{x}_{2}^{2}\right)\right)$ such that

$$
u_{i}\left(\hat{x}_{1}^{i}, \hat{x}_{2}^{i}\right) \geq u_{i}\left(x_{1}^{i *}, x_{2}^{i *}\right) \text { for all } i
$$

with strict inequality for at least one agent.

- Barter outcomes in Edgeworth box
- Endowments $\left(\omega_{1}, \omega_{2}\right)$
- Area that satisfies individual rationality condition
- Points that satisfy pareto efficiency
- Pareto set. Set of points where indifference curves are tangent
- Contract curve. Subset of Pareto set inside the individually rational area.
- Contract curve $=$ Set of barter equilibria
- Multiple equilibria. Depends on bargaining power.
- Bargaining is time- and information-intensive procedure
- What if there are prices instead?

2 Walrasian Equilibrium

- Prices p_{1}, p_{2}
- Consumer 1 faces a budget set:

$$
p_{1} x_{1}^{1}+p_{2} x_{2}^{1} \leq p_{1} \omega_{1}^{1}+p_{2} \omega_{2}^{1}
$$

- How about consumer 2?
- Budget set of consumer 2 :

$$
\begin{aligned}
& \qquad p_{1} x_{1}^{2}+p_{2} x_{2}^{2} \leq p_{1} \omega_{1}^{2}+p_{2} \omega_{2}^{2} \\
& \text { or }\left(\text { assuming } x_{i}^{1}+x_{i}^{2}=\omega_{i}\right) \\
& p_{1}\left(\omega_{1}-x_{1}^{1}\right)+p_{2}\left(\omega_{1}-x_{2}^{1}\right) \leq p_{1}\left(\omega_{1}-\omega_{1}^{1}\right)+p_{2}\left(\omega_{2}-\omega_{2}^{1}\right)
\end{aligned}
$$

or

$$
p_{1} x_{1}^{1}+p_{2} x_{2}^{1} \geq p_{1} \omega_{1}^{1}+p_{2} \omega_{2}^{1}
$$

- Walrasian Equilibrium. $\left(\left(x_{1}^{1 *}, x_{2}^{1 *}\right),\left(x_{1}^{2 *}, x_{2}^{2 *}\right), p_{1}^{*}, p_{2}^{*}\right)$ is a Walrasian Equilibrium if:
- Each consumer maximizes utility subject to budget constraint:

$$
\begin{aligned}
\left(x_{1}^{i *}, x_{2}^{i *}\right) & =\arg \max _{x_{1}^{i}, x_{2}^{i}} u_{i}\left(\left(x_{1}^{i}, x_{2}^{i}\right)\right. \\
\text { s.t. } p_{1}^{*} x_{1}^{i}+p_{2}^{*} x_{2}^{i} & \leq p_{1}^{*} \omega_{1}^{i}+p_{2}^{*} \omega_{2}^{i}
\end{aligned}
$$

- Markets clear:

$$
x_{j}^{1 *}+x_{j}^{2 *} \leq \omega_{j}^{1}+\omega_{j}^{2} \text { for all } j .
$$

- Compare with partial (Marshallian) equilibrium:
- each consumer maximizes utility
- market for good i clears.
- (no requirement that all markets clear)
- Graphical depiction in Edbeworth box. Set of optimal points as prices p_{1} and p_{2} vary.
- Draw offer curve for consumer 1 (equivalent of demand curve in partial equilibrium):

$$
\left(x_{1}^{1 *}\left(p_{1}, p_{2},\left(\omega_{1}, \omega_{2}\right)\right), x_{2}^{1 *}\left(p_{1}, p_{2},\left(\omega_{1}, \omega_{2}\right)\right)\right)
$$

- Offer curve is set of points that maximize utility as function of the varying prices p_{1} and p_{2}.
- Draw offer curve for consumer 2.
- Walrasian Equilibrium is at intersection of the two offer curves!
- Walrasian Equilibrium is a subset of barter equilibrium:
- Does satisfy individual rationality?
- Does it satisfy the Pareto Efficiency condition?
- Is any point in Contract Curve a WE for allocation $\left(\omega_{1}, \omega_{2}\right)$?

3 Example

- Consumer 1 has Leontieff preferences:

$$
u\left(x_{1}, x_{2}\right)=\min \left(x_{1}^{1}, x_{2}^{1}\right)
$$

- Bundle demanded by consumer 1 :

$$
\begin{aligned}
x_{1}^{1 *} & =x_{2}^{1 *}=x^{1 *}=\frac{p_{1} \omega_{1}^{1}+p_{2} \omega_{2}^{1}}{p_{1}+p_{2}}= \\
& =\frac{\omega_{1}^{1}+\left(p_{2} / p_{1}\right) \omega_{2}^{1}}{1+\left(p_{2} / p_{1}\right)}
\end{aligned}
$$

- Consumer 2 has Cobb-Douglas preferences:

$$
u\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}\right)^{.5}\left(x_{2}^{2}\right)^{.5}
$$

- Demands of consumer 2 :

$$
x_{1}^{2 *}=\frac{.5\left(p_{1} \omega_{1}^{1}+p_{2} \omega_{2}^{1}\right)}{p_{1}}=.5\left(\omega_{1}^{1}+\frac{p_{2}}{p_{1}} \omega_{2}^{1}\right)
$$

and

$$
x_{2}^{2 *}=\frac{.5\left(p_{1} \omega_{1}^{1}+p_{2} \omega_{2}^{1}\right)}{p_{2}}=.5\left(\frac{p_{1}}{p_{2}} \omega_{1}^{1}+\omega_{2}^{1}\right)
$$

- Impose Walrasian equilibrium in market 1 :

$$
x_{1}^{1 *}+x_{1}^{2 *}=\omega_{1}^{1}+\omega_{1}^{2}
$$

- This implies

$$
\frac{\omega_{1}^{1}+\left(p_{2} / p_{1}\right) \omega_{2}^{1}}{1+\left(p_{2} / p_{1}\right)}+.5\left(\omega_{1}^{1}+\frac{p_{2}}{p_{1}} \omega_{2}^{1}\right)=\omega_{1}^{1}+\omega_{1}^{2}
$$

4 An example of Excellent Economics

- Savings Rate in the US very low: essentially zero in year 2,000
- Perhaps: Self-control Problem
- People would like to save but...Not today!
- Credit cards and (too) high borrowing rates

- Is this testable?

- Prediction of hyperbolic discounting theory:
- people do not like to save today
- people like to save tomorrow
- Save Tomorrow?
- Benartzi and Thaler (2002): Design of Save More Tomorrow (SMT) Plan
- 401(k) private savings or retirement
- SMT Plan:
- No increase in savings today
- 3\% automatic increase in savings at time of paycheck raise
- can drop out at any time
- Advantages:
- No current increase
- Commit today for future
- Use inertia/procrastination the good way!
- No decrease in nominal salary (loss aversion)
- Option out

- The facts:

- 1998: mid-size company, 315 eligible employees
- 'you guys are saving too little!'
- 79 employees: increase savings now
- 162 employees: no increase now, will try SMT
- 158 employees: remain in SMT plan for two years
- Effect: savings rate up from 3.5 to 11.6 percent! In three years!

5 Advice

1. Listen to your heart
2. Trust yourself
3. Take 'good' risks:
(a) hard courses
(b) internship opportunities
(c) research - URAP
(d) (graduate classes?)
4. Learn to be curious, critical, and frank

5. Be nice to others! (nothing in economics tells you otherwise)

