Economics 101A (Lecture 12)

Stefano DellaVigna

October 12, 2004

Outline

- 1. Nobel Prize winners
- 2. Risk Aversion and Lottery
- 3. Investment in Risky Asset
- 4. Measures of Risk Aversion
- 5. Time Consistency
- 6. Time Inconsistency

1 Nobel Prize winners

- Finn Kydland (UCSB)
- Edward Prescott (Fed Reserve Minneapolis)
- Dynamic Macroecomics
- Highlight temporal time-inconcistency of policy
- (Coming in last part of course...)

2 Risk Aversion and Lottery

- Are you risk-averse?
- Let's see...

3 Investment in Risk Asset

- Individual has:
 - wealth \boldsymbol{w}
 - utility function u, with u' > 0
- Two possible investments:
 - Asset B (bond) yields return 1 for each dollar
 - Asset S (stock) yields uncertain return (1 + r):
 - $* r = r_+ > 0$ with probability p
 - * $r = r_{-} < 0$ with probability 1 p
 - * $Er = pr_{+} + (1 p)r_{-} > 0$
- Share of wealth invested in stock ${\rm S}=\alpha$

• Individual maximization:

$$\begin{aligned} \max_{\alpha} \left(1-p\right) u\left(w\left[\left(1-\alpha\right)+\alpha\left(1+r_{-}\right)\right]\right) + \\ +pu\left(w\left[\left(1-\alpha\right)+\alpha\left(1+r_{+}\right)\right]\right) \\ s.t. & 0 \leq \alpha \leq 1 \end{aligned}$$

- Case of risk aversion: u'' < 0
- Assume $\mathbf{0} \leq \alpha^* \leq \mathbf{1}$, check later
- First order conditions:

$$0 = (1-p)(wr_{-})u'(w[1+\alpha r_{-}]) + p(wr_{+})u'(w[1+\alpha r_{+}])$$

- Solution is $\alpha^* > 0$ (positive investment in stock)
- Exercise: Check s.o.c.

4 Measures of Risk Aversion

- Nicholson, Ch. 18, pp. 541–545 [OLD: Ch. 8, pp. 207–210].
- How risk averse is an individual?

• Two measures:

– Absolute Risk Aversion r_A :

$$r_A = -\frac{u''(x)}{u'(x)}$$

- Relative Risk Aversion r_R :

$$r_R = -\frac{u''(x)}{u'(x)}x$$

• Examples in the Problem Set

5 Time consistency

- Intertemporal choice
- Three periods, t = 0, t = 1, and t = 2

- At each period *i*, agents:
 - have income $M'_i = M_i + \text{savings/debts}$ from previous period
 - choose consumption c_i ;
 - can save/borrow $M'_i c_i$
 - no borrowing in last period: at $t = 2 M'_2 = c_2$

• Utility function at
$$t = 0$$

 $u(c_0, c_1, c_2) = U(c_0) + \frac{1}{1+\delta} EU(c_1) + \frac{1}{(1+\delta)^2} EU(c_2)$

• Utility function at t = 1 $u(c_1, c_2) = U(c_1) + \frac{1}{1+\delta}EU(c_2)$

• Utility function at t = 2

$$u(c_2) = U(c_2)$$

• U' > 0, U'' < 0

• Question: Do preferences of agent in period 0 agree with preferences of agent in period 1?

• Period 1.

• Budget constraint at t = 1:

$$c_1 + \frac{1}{1+r}c_2 \le M_1' + \frac{1}{1+r}M_2$$

• Maximization problem:

$$\max U(c_1) + \frac{1}{1+\delta} EU(c_2)$$

s.t. $c_1 + \frac{1}{1+r} c_2 \le M'_1 + \frac{1}{1+r} M_2$

- First order conditions:
- Ratio of f.o.c.s:

$$\frac{U'(c_1)}{EU'(c_2)} = \frac{1+r}{1+\delta}$$

- Back to **period 0**.
- Agent at time 0 can commit to consumption at time
 1 as function of uncertain income M₁.
- Anticipated budget constraint at t = 1:

$$c_1 + \frac{1}{1+r}c_2 \le M_1' + \frac{1}{1+r}M_2$$

• Maximization problem:

$$\max U(c_0) + \frac{1}{1+\delta}U(c_1) + \frac{1}{(1+\delta)^2}EU(c_2)$$

s.t. $c_1 + \frac{1}{1+r}c_2 \le M'_1 + \frac{1}{1+r}M_2$

- First order conditions:
- Ratio of f.o.c.s:

$$\frac{U'(c_1)}{EU'(c_2)} = \frac{1+r}{1+\delta}$$

- The two conditions coincide!
- **Time consistency.** Plans for future coincide with future actions.
- To see why, rewrite utility function $u(c_0, c_1, c_2)$: $U(c_0) + \frac{1}{1+\delta}U(c_1) + \frac{1}{(1+\delta)^2}EU(c_2)$ $= U(c_0) + \frac{1}{1+\delta}\left[U(c_1) + \frac{1}{1+\delta}EU(c_2)\right]$
- Expression in brackets coincides with utility at t = 1
- Is time consistency right?
 - addictive products (alcohol, drugs);
 - good actions (exercising, helping friends);
 - immediate gratification (shopping, credit card borrowing)

6 Time Inconsistency

- Alternative specification (Akerlof, 1991; Laibson, 1997; O'Donoghue and Rabin, 1999)
- Utility at time t is $u(c_t, c_{t+1}, c_{t+2})$:

$$u(c_t) + \frac{\beta}{1+\delta}u(c_{t+1}) + \frac{\beta}{(1+\delta)^2}u(c_{t+2}) + \dots$$

• Discount factor is

$$1, \frac{\beta}{1+\delta}, \frac{\beta}{(1+\delta)^2}, \frac{\beta}{(1+\delta)^3}, \dots$$

instead of

$$1, rac{1}{1+\delta}, rac{1}{(1+\delta)^2}, rac{1}{(1+\delta)^3}, ...$$

- What is the difference?
- Immediate gratification: $\beta < 1$

- Back to our problem: **Period 1**.
- Maximization problem:

$$\max U(c_1) + \frac{\beta}{1+\delta} EU(c_2)$$

s.t. $c_1 + \frac{1}{1+r} c_2 \le M'_1 + \frac{1}{1+r} M_2$

- First order conditions:
- Ratio of f.o.c.s:

$$\frac{U'(c_1^*)}{EU'(c_2^*)} = \beta \frac{1+r}{1+\delta}$$

- Now, **period 0** with commitment.
- Maximization problem:

$$\max U(c_0) + \frac{\beta}{1+\delta}U(c_1) + \frac{\beta}{(1+\delta)^2}EU(c_2)$$

s.t. $c_1 + \frac{1}{1+r}c_2 \le M'_1 + \frac{1}{1+r}M_2$

- First order conditions:
- Ratio of f.o.c.s:

$$\frac{U'(c_1^{*,c})}{EU'(c_2^{*,c})} = \frac{1+r}{1+\delta}$$

- The two conditions differ!
- Time inconsistency: $c_1^{\ast,c} < c_1^{\ast}$ and $c_2^{\ast,c} > c_2^{\ast}$
- The agent allows him/herself too much immediate consumption and saves too little

- Ok, we agree. but should we study this as economists?
- YES!
 - One trillion dollars in credit card debt;
 - Most debt is in teaser rates;
 - Two thirds of Americans are overwight or obese;
 - \$10bn health-club industry

- Is this testable?
 - In the laboratory?
 - In the field?

7 Next lecture and beyond

- Th:
 - Finish Time Inconsistency
 - Begin Production
 - Returns to scale
 - Cost minimization