Economics 101A (Lecture 13)

Stefano DellaVigna

October 14, 2004

Outline

1. Time Inconsistency II

2. Health Club Attendance
3. Production: Introduction
4. Production Function
5. Returns to Scale
6. Two-step Cost Minimization

1 Time Inconsistency II

- Alternative specification (Akerlof, 1991; Laibson, 1997; O'Donoghue and Rabin, 1999)
- Utility at time t is $u\left(c_{t}, c_{t+1}, c_{t+2}\right)$:

$$
u\left(c_{t}\right)+\frac{\beta}{1+\delta} u\left(c_{t+1}\right)+\frac{\beta}{(1+\delta)^{2}} u\left(c_{t+2}\right)+\ldots
$$

- Discount factor is

$$
1, \frac{\beta}{1+\delta}, \frac{\beta}{(1+\delta)^{2}}, \frac{\beta}{(1+\delta)^{3}}, \ldots
$$

instead of

$$
1, \frac{1}{1+\delta}, \frac{1}{(1+\delta)^{2}}, \frac{1}{(1+\delta)^{3}}, \ldots
$$

- What is the difference?
- Immediate gratification: $\beta<1$
- Back to our problem: Period 1.
- Maximization problem:

$$
\begin{aligned}
& \max U\left(c_{1}\right)+\frac{\beta}{1+\delta} E U\left(c_{2}\right) \\
& \text { s.t. } c_{1}+\frac{1}{1+r} c_{2} \leq M_{1}^{\prime}+\frac{1}{1+r} M_{2}
\end{aligned}
$$

- First order conditions:
- Ratio of f.o.c.s:

$$
\frac{U^{\prime}\left(c_{1}^{*}\right)}{E U^{\prime}\left(c_{2}^{*}\right)}=\beta \frac{1+r}{1+\delta}
$$

- Now, period 0 with commitment.
- Maximization problem:

$$
\begin{aligned}
& \max U\left(c_{0}\right)+\frac{\beta}{1+\delta} U\left(c_{1}\right)+\frac{\beta}{(1+\delta)^{2}} E U\left(c_{2}\right) \\
& \text { s.t. } c_{1}+\frac{1}{1+r} c_{2} \leq M_{1}^{\prime}+\frac{1}{1+r} M_{2}
\end{aligned}
$$

- First order conditions:
- Ratio of f.o.c.s:

$$
\frac{U^{\prime}\left(c_{1}^{*, c}\right)}{E U^{\prime}\left(c_{2}^{*, c}\right)}=\frac{1+r}{1+\delta}
$$

- The two conditions differ!
- Time inconsistency: $c_{1}^{*, c}<c_{1}^{*}$ and $c_{2}^{*, c}>c_{2}^{*}$
- The agent allows him/herself too much immediate consumption and saves too little
- Ok, we agree. but should we study this as economists?
- YES!
- One trillion dollars in credit card debt;
- Most debt is in teaser rates;
- Two thirds of Americans are overwight or obese;
- \$10bn health-club industry
- Is this testable?
- In the laboratory?
- In the field?

2 Health Club Attendance

- Health club industry study (DellaVigna and Malmendier, 2002)
- 3 health clubs
- Data on attendance from swiping cards
- Choice of contracts:
- Monthly contract with average price of $\$ 75$
- 10-visit pass for $\$ 100$
- Consider users that choose monthly contract. Attendance?
- Attend on average 4.8 times per month
- Pay on average over $\$ 17$
- Average delay of 2.2 months (\$185) between last attendance and contract termination
- Over membership, user could have saved $\$ 700$ by paying per visit
- Health club attendance:
- immediate cost c
- delayed benefit b
- At sign-up (attend tomorrow):

$$
N B^{t}=-\frac{\beta}{1+\delta} c+\frac{\beta}{(1+\delta)^{2}} b
$$

- Plan to attend if $N B^{t}>0$

$$
c<\frac{1}{(1+\delta)} b
$$

- Once moment to attend comes:

$$
N B=-c+\frac{\beta}{(1+\delta)} b
$$

- Attend if $N B>0$

$$
c<\frac{\beta}{(1+\delta)} b
$$

- Interpretations?

- Users are buying a commitment device
- User underestimate their future self-control problems:
- They overestimate future attendance
- They delay cancellation

3 Production: Introduction

- Second half of the economy. Production
- Example. Ford and the Minivan (Petrin, 2002):
- Ford had idea: "Mini/Max" (early '70s)
- Did Ford produce it?
- No!
- Ford was worried of cannibalizing station wagon sector
- Chrysler introduces Dodge Caravan (1984)
- Chrysler: $\$ 1.5$ bn profits (by 1987)!
- Why need separate treatment?
- Perhaps firms maximize utility...
- ...we can be more precise:
- Competition
- Institutional structure

4 Production Function

- Nicholson, Ch. 7, pp. 183-190; 195-200 [OLD: Ch. 11, pp. 268-275; 280-285]
- Production function: $y=f(\mathbf{z})$. Function $f: R_{+}^{n} \rightarrow$ R_{+}
- Inputs $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$: labor, capital, land, human capital
- Output y : Minivan, Intel Pentium III, mangoes (Philippines)
- Properties of f :
- no free lunches: $f(0)=0$
- positive marginal productivity: $f_{i}^{\prime}(\mathbf{z})>0$
- decreasing marginal productivity: $f_{i, i}^{\prime \prime}(\mathbf{z})<0$
- Isoquants $Q(y)=\{\mathbf{x} \mid f(\mathbf{x})=y\}$
- Set of inputs \mathbf{z} required to produce quantity y
- Special case. Two inputs:
- $z_{1}=L$ (labor)
$-z_{2}=K$ (capital)
- Isoquant: $f(L, K)-y=0$
- Slope of isoquant $d K / d L=M R T S$

- Convex production function if convex isoquants

- Reasonable: combine two technologies and do better!
- Mathematically, $d^{2} K / d^{2} L=$

5 Returns to Scale

- Nicholson, Ch. 7, pp. 190-193 [OLD: Ch. 11, pp. 275-278]
- Effect of increase in labor: f_{L}^{\prime}
- Increase of all inputs: $f(t z)$ with t scalar, $t>1$
- How much does input increase?
- Decreasing returns to scale: for all \mathbf{z} and $t>1$,

$$
f(t \mathbf{z})<t f(\mathbf{z})
$$

- Constant returns to scale: for all \mathbf{z} and $t>1$,

$$
f(t \mathbf{z})=t f(\mathbf{z})
$$

- Increasing returns to scale: for all \mathbf{z} and $t>1$,

$$
f(t \mathbf{z})>t f(\mathbf{z})
$$

- Example: $y=f(K, L)=A K^{\alpha} L^{\beta}$
- Marginal product of labor: $f_{L}^{\prime}=$
- Decreasing marginal product of labor: $f_{L}^{\prime \prime}=$
- $M R T S=$
- Convex isoquant?
- Returns to scale: $f(t K, t L)=A(t K)^{\alpha}(t L)^{\beta}=$ $t^{\alpha+\beta} A K^{\alpha} L^{\beta}=t^{\alpha+\beta} f(K, L)$

6 Two-step Cost minimization

- Nicholson, pp. 212-220 [OLD, Ch. 12 , pp. 298307]
- Objective of firm: Produce output that generates maximal profit.
- Decompose problem in two:
- Given production level y, choose cost-minimizing combinations of inputs
- Choose optimal level of y.
- First step. Cost-Minimizing choice of inputs
- Two-input case: Labor, Capital
- Input prices:
- Wage w is price of L
- Interest rate r is rental price of capital K
- Expenditure on inputs: $w L+r K$
- Firm objective function:

$$
\begin{aligned}
& \min w L+r K \\
& \text { s.t.f }(L, K) \geq y
\end{aligned}
$$

- Compare with expenditure minimization for consumers
- First order conditions:

$$
w-\lambda f_{L}^{\prime}=0
$$

and

$$
r-\lambda f_{K}^{\prime}=0
$$

- Rewrite as

$$
\frac{f_{L}^{\prime}\left(L^{*}, K^{*}\right)}{f_{K}^{\prime}\left(L^{*}, K^{*}\right)}=\frac{w}{r}
$$

- MRTS (slope of isoquant) equals ratio of input prices

- Graphical interpretation

- Derived demand for inputs:
$-L=L^{*}(w, r, y)$

$$
-K=K^{*}(w, r, y)
$$

- Value function at optimum is cost function:

$$
c(w, r, y)=w L^{*}(r, w, y)+r K^{*}(r, w, y)
$$

- Second step. Given cost function, choose optimal quantity of y as well
- Price of output is p.
- Firm's objective:

$$
\max p y-c(w, r, y)
$$

- First order condition:

$$
p-c_{y}^{\prime}(w, r, y)=0
$$

- Price equals marginal cost - very important!

7 Next Lecture

- Continue Cost Minimization
- Solve an Example
- Cases in which s.o.c. are not satisfied
- Start Profit Maximization

