Economics 101A (Lecture 16)

Stefano DellaVigna

October 26, 2004

Outline

- 1. Aggregation
- 2. Maket Equilibrium in Short-Run
- 3. Comparative Statics of Equilibrium
- 4. Elasticities

1 Aggregation

1.1 Producers aggregation

- J companies, j = 1, ..., J, producing good i
- Company j has supply function

$$y_i^j = y_i^{j*}(p_i, w, r)$$

• Industry supply function:

$$Y_{i}(p_{i}, w, r) = \sum_{j=1}^{J} y_{i}^{j*}(p_{i}, w, r)$$

• Graphically,

1.2 Consumer aggregation

- Nicholson, Ch. 10, pp. 279–282 [OLD: Ch. 7, pp. 172–176]
- One-consumer economy
- Utility function $u(x_1, ..., x_n)$, prices $p_1, ..., p_n$

• Maximization
$$\Longrightarrow$$

$$x_{1}^{*} = x_{1}^{*}(p_{1},...,p_{n},M),$$

:
$$x_{n}^{*} = x_{n}^{*}(p_{1},...,p_{n},M).$$

- Good *i*. Fix prices $p_1, ..., p_{i-1}, p_{i+1}, ..., p_n$ and M
- Single-consumer demand function:

$$x_i^* = x_i^* (p_i | p_1, \dots, p_{i-1}, p_{i+1}, \dots, p_n, M)$$

- What is sign of $\partial x_i^* / \partial p_i$?
- Negative if good i is normal
- Negative or positive if good i is inferior

• Graphically,

- Aggregation: J consumers, j = 1, ..., J
- Demand for good i by consumer j :

$$x_i^{j*} = x_i^{j*} \left(p_1, ..., p_n, M^j \right)$$

• Market demand X_i :

$$X_{i}\left(p_{1},...,p_{n},M^{1},...,M^{J}\right)$$
$$=\sum_{j=1}^{J}x_{i}^{j*}\left(p_{1},...,p_{n},M^{j}\right)$$

• Graphically,

• Notice: market demand function depends on distribution of income ${\cal M}^J$

- Market demand function X_i :
 - Consumption of good i as function of prices ${f p}$
 - Consumption of good i as function of income distribution ${\cal M}^j$

2 Market Equilibrium in the Short-Run

- Nicholson, Ch. 10, pp. 283–295 [OLD: Ch. 14, pp. 368–382]
- What is equilibrium price p_i ?
- Magic of the Market...
- Equilibrium: No excess supply, No excess demand
- Prices \mathbf{p}^* equates demand and supply of good i:

$$Y^* = Y_i^S(p_i^*, w, r) = X_i^D(p_1^*, ..., p_n^*, M^1, ..., M^J)$$

• Graphically,

• Notice: in short-run firms can make positive profits

• Comparative statics exercises with endogenous price p_i :

- increase in wage w or interest rate r:

- change in income distribution

3 Comparative statics of equilibrium

 $\bullet\,$ Supply and Demand function of parameter α :

-
$$Y_i^S(p_i, w, r, \alpha)$$

- $X_i^D(\mathbf{p}, \mathbf{M}, \alpha)$

- How does α affect p^* and Y^* ?
- Comparative statics with respect to lpha

• Equilibrium:

$$Y_i^S(p_i, w, r, \alpha) = X_i^D(\mathbf{p}, \mathbf{M}, \alpha)$$

• Can write equilibrium as implicit function:

$$Y_i^S(p_i, w, r, \alpha) - X_i^D(\mathbf{p}, \mathbf{M}, \alpha) = \mathbf{0}$$

- What is $dp^*/d\alpha$?
- Implicit function theorem:

$$\frac{\partial p^*}{\partial \alpha} = -\frac{\frac{\partial Y^S}{\partial \alpha} - \frac{\partial X^D}{\partial \alpha}}{\frac{\partial Y^S}{\partial p} - \frac{\partial X^D}{\partial p}}$$

• What is sign of denominator?

• Sign of $\partial p^*/\partial \alpha$ is negative of sign of numerator

- Examples:
 - 1. *Fad.* Good becomes more fashionable: $\frac{\partial X^D}{\partial \alpha} > 0 \implies \frac{\partial p^*}{\partial \alpha} > 0$
 - 2. Recession in Europe. Negative demand shock for US firms: $\frac{\partial X^D}{\partial \alpha} < 0 \Longrightarrow \frac{\partial p^*}{\partial \alpha} < 0$
 - 3. *Oil shock.* Import prices increase: $\frac{\partial Y^S}{\partial \alpha} < 0 \implies \frac{\partial p^*}{\partial \alpha} > 0$
 - 4. Computerization. Improvement in technology. $\frac{\partial Y^S}{\partial \alpha} > 0 \Longrightarrow \frac{\partial p^*}{\partial \alpha} < 0$

4 Elasticities

- [Not in midterm]
- Nicholson, Ch.1, pp. 27–28 [OLD: Ch.7, pp. 176– 177]
- How do we interpret magnitudes of $\partial p^* / \partial \alpha$?
- Result depends on units of measure.
- Can we write $\partial p^* / \partial \alpha$ in a unit-free way?
- Yes! Use elasticities.
- Elasticity of x with respect to parameter p is

$$\varepsilon_{x,p} = \frac{\partial x}{\partial p} \frac{p}{x}$$

• Interpretation: Percent response in x to percent change in p :

$$\varepsilon_{x,p} = \frac{\partial x p}{\partial p x} = \lim_{dp \to 0} \frac{x (p + dp) - x (p) p}{dp x} = \lim_{dp \to 0} \frac{dx/x}{dp/p}$$

where $dx \equiv x (p + dp) - x (p)$.

• Now, show

$$\varepsilon_{x,p} = \frac{\partial \ln x}{\partial \ln p}$$

• Notice: This makes sense only for x > 0 and p > 0

• Proof. Consider function

$$x = f(p)$$

• Rewrite as

$$\ln(x) = \ln f(p) = \ln f\left(e^{\ln(p)}\right)$$

- Define $\hat{x} = \ln(x)$ and $\hat{p} = \ln(p)$
- This implies

$$\hat{x} = \ln f\left(e^{\hat{p}}\right)$$

• Get

$$\frac{\partial \hat{x}}{\partial \hat{p}} = \frac{\partial \ln x}{\partial \ln p} =$$

$$= \frac{1}{f\left(e^{\hat{p}}\right)} \frac{\partial f\left(e^{\hat{p}}\right)}{\partial \hat{p}} e^{\hat{p}} = \frac{\partial x p}{\partial p x}$$

• Example with Cobb-Douglas utility function

•
$$U(x,y) = x^{\alpha}y^{1-\alpha}$$
 implies solutions

$$x^* = \alpha \frac{M}{p_x}, y^* = (1 - \alpha) \frac{M}{p_y}$$

• Elasticity of demand with respect to own price ε_{x,p_x} :

$$\varepsilon_{x,p_x} = \frac{\partial x^*}{\partial p_x} \frac{p_x}{x^*} = -\frac{\alpha M}{(p_x)^2} \frac{p_x}{\alpha \frac{M}{p_x}} = -1$$

• Elasticity of demand with respect to other price $\varepsilon_{x,p_y} = 0$

• Go back to problem above:

$$\frac{\partial p^*}{\partial \alpha} = -\frac{\frac{\partial Y^S}{\partial \alpha} - \frac{\partial X^D}{\partial \alpha}}{\frac{\partial Y^S}{\partial p} - \frac{\partial X^D}{\partial p}}$$

• Use elasticities to rewrite response of p to change in α :

$$\frac{\partial p^* \alpha}{\partial \alpha p} = -\frac{\left(\frac{\partial Y^S}{\partial \alpha} - \frac{\partial X^D}{\partial \alpha}\right) \frac{\alpha}{Y}}{\left(\frac{\partial Y^S}{\partial p} - \frac{\partial X^D}{\partial p}\right) \frac{p}{Y}}$$

or (using fact that $X^{D*} = Y^{s*}$)

$$\varepsilon_{p,\alpha} = -\frac{\varepsilon_{S,\alpha} - \varepsilon_{D,\alpha}}{\varepsilon_{S,p} - \varepsilon_{D,p}}$$

• We are likely to know elasticities from empirical studies.

5 Next Lecture

• Midterm and then...

- Taxes and Subsidies
- Long-Run Equilibrium