Economics 101A (Lecture 18)

Stefano DellaVigna

November 4, 2004

Outline

1. Welfare: Producer Surplus

2. Welfare: Consumer Surplus
3. Profit Maximization: Monopoly

1 Welfare: Producer Surplus

- Nicholson, Ch. 9, pp. 261-263 [OLD: Ch. 13, pp. 350-351]
- Producer Surplus is easier to define:

$$
\pi\left(p, y_{0}\right)=p y_{0}-c\left(y_{0}\right) .
$$

- Can give two graphical interpretations:

1. Rewrite as

$$
\pi\left(p, y_{0}\right)=y_{0}\left[p-\frac{c\left(y_{0}\right)}{y_{0}}\right]
$$

Profit equals rectangle of quantity times ($p-A v$. Cost)
2. Remember:

$$
f(x)=f(0)+\int_{0}^{x} f_{x}^{\prime}(s) d s
$$

Rewrite profit as

$$
\begin{aligned}
& {\left[p * 0+p \int_{0}^{y_{0}} 1 d y\right]-\left[c(0)+\int_{0}^{y_{0}} c_{y}^{\prime}(y) d y\right]=} \\
= & \int_{0}^{y_{0}}\left(p-c_{y}^{\prime}(y)\right) d y-c(0) .
\end{aligned}
$$

Producer surplus is area between price and marginal cost (minus fixed cost)

2 Welfare: Consumer Surplus

- Nicholson, Ch. 5, pp. 145-149 [OLD: Ch. 5, pp. 139-143]
- Evaluate welfare effects of price change from p_{0} to p_{1}
- Proposed measure:

$$
e\left(p_{0}, u\right)-e\left(p_{1}, u\right)
$$

- Can rewrite expression above as

$$
\begin{aligned}
e\left(p_{0}, u\right)-e\left(p_{1}, u\right)= & \left(e(0, u)+\int_{0}^{p_{0}} \frac{\partial e(p, u)}{\partial p} d p\right)- \\
& -\left(e(0, u)+\int_{0}^{p_{1}} \frac{\partial e(p, u)}{\partial p} d p\right) \\
= & \int_{p_{1}}^{p_{0}} \frac{\partial e(p, u)}{\partial p} d p
\end{aligned}
$$

- What is $\frac{\partial e(p, u)}{\partial p}$?
- Remember envelope theorem...
- Result:

$$
\frac{\partial e(p, u)}{\partial p}=h(p, u)
$$

- Welfare mesure is integral of area to the side of Hicksian compensated demand
- Graphically,

3 Profit Maximization: Monopoly

- Nicholson, Ch. 13, pp. 385-393 [OLD: Ch. 18, pp. 496-504]
- Nicholson, Ch. 9, pp. 248-255 [OLD: Ch. 13, pp. 335-342]
- Perfect competition. Firms small relative to market
- Monopoly. One, large firm. Firm sets price p to maximize profits.
- What does it mean to set prices?
- Firm chooses p, demand given by $y=D(p)$
- (OR: firm sets quantity y. Price $\left.p(y)=D^{-1}(y)\right)$
- Write maximization with respect to y
- Firm maximizes profits, that is, revenue minus costs:

$$
\max _{y} p(y) y-c(y)
$$

- Notice $p(y)=D^{-1}(y)$
- First order condition:

$$
p^{\prime}(y) y+p(y)-c_{y}^{\prime}(y)=0
$$

or

$$
\frac{p(y)-c_{y}^{\prime}(y)}{p}=-p^{\prime}(y) \frac{y}{p}=-\frac{1}{\varepsilon_{y, p}}
$$

- Compare with f.o.c. in perfect competition
- Check s.o.c.
- Elasticity of demand determines markup:
- very elastic demand \rightarrow low mark-up
- relatively inelastic demand \rightarrow higher mark-up
- Graphically, y^{*} is where marginal revenue $\left(p^{\prime}(y) y+p(y)\right)$ equals marginal cost $\left(c_{y}^{\prime}(y)\right)$
- Find p on demand function
- Example.
- Linear inverse demand function $p=a-b y$
- Linear costs: $C(y)=c y$, with $c>0$
- Maximization:

$$
\max _{y}(a-b y) y-c y
$$

- Solution:

$$
y^{*}(a, b, c)=\frac{a-c}{2 b}
$$

and

$$
p^{*}(a, b, c)=a-b \frac{a-c}{2 b}=\frac{a+c}{2}
$$

- S.O.C.
- Figure
- Comparative statics:
- Change in marginal cost c
- Shift in demand curve a

- Monopoly profits

- Case 1. High profits
- Case 2. No profits
- Welfare consequences of monopoly
- Too little production
- Too high prices
- Graphical analysis

4 Next Lecture

- Market Power
- Price Discrimination

