Economics 101A (Lecture 21)

Stefano DellaVigna

November 18, 2004

Outline

1. Oligopoly: Cournot

2. Oligopoly: Bertrand

3. Second-price Auction

4. Dynamic Games

1 Oligopoly: Cournot

- Nicholson, Ch. 14, pp. 418-419, 421-422 [OLD: p. 531, 534-535].
- Back to oligopoly maximization problem
- Assume 2 firms, cost $c_{i}\left(y_{i}\right)=c y_{i}, i=1,2$
- Firms choose simultaneously quantity y_{i}
- Firm i maximizes:

$$
\max _{y_{i}} p\left(y_{i}+y_{-i}\right) y_{i}-c y_{i} .
$$

- First order condition with respect to y_{i} :

$$
p_{Y}^{\prime}\left(y_{i}^{*}+y_{-i}^{*}\right) y_{i}^{*}+p-c=0, i=1,2
$$

- Nash equilibrium:
- y_{1} optimal given y_{2};
- y_{2} optimal given y_{1}.
- Solve equations:

$$
\begin{gathered}
p_{Y}^{\prime}\left(y_{1}^{*}+y_{2}^{*}\right) y_{1}^{*}+p-c=0 \text { and } \\
p_{Y}^{\prime}\left(y_{2}^{*}+y_{1}^{*}\right) y_{2}^{*}+p-c=0 .
\end{gathered}
$$

- Cournot -> Pricing above marginal cost

2 Oligopoly: Bertrand

- Previously, we assumed firms choose quantities
- Now, assume firms first choose prices, and then produce quantity demanded by market
- 2 firms
- Profits:

$$
\pi_{i}\left(p_{i}, p_{-i}\right)=\left\{\begin{array}{clc}
\left(p_{i}-c\right) Y\left(p_{i}\right) & \text { if } & p_{i}<p_{-i} \\
\left(p_{i}-c\right) Y\left(p_{i}\right) / 2 & \text { if } & p_{i}=p_{-i} \\
0 & \text { if } & p_{i}>p_{-i}
\end{array}\right.
$$

- First show that $p_{1}=c=p_{2}$ is Nash Equilibrium
- Does any firm have a (strict) incentive to deviate?
- Show that this equilibrium is unique
- Case 1. $p_{1}>p_{2}>c$
- Case 2. $p_{1}=p_{2}>c$
- Case 3. $p_{1}>c \geq p_{2}$
- Case 4. $c>p_{1} \geq p_{2}$
- Case 5. $p_{1}=c>p_{2}$
- Case 6. $p_{1}=c=p_{2}$
- It is unique!

- Marginal cost pricing

- Two firms are enough to guarantee perfect competition!
- Price wars

3 Second-price Auction

- Sealed-bid auction
- Highest bidder wins object
- Price paid is second highest price
- Two individuals: $I=2$
- Strategy s_{i} is bid b_{i}
- Each individual knows value v_{i}
- Payoff for individual i is

$$
u_{i}\left(b_{i}, b_{-i}\right)=\left\{\begin{array}{cll}
v_{i}-b_{-i} & \text { if } & b_{i}>b_{-i} \\
\left(v_{i}-b_{-i}\right) / 2 & \text { if } & b_{i}=b_{-i} \\
0 & \text { if } & b_{i}<b_{-i}
\end{array}\right.
$$

- Show: weakly dominant to set $b_{i}^{*}=v_{i}$
- To show:

$$
u_{i}\left(v_{i}, b_{-i}\right) \geq u_{i}\left(b_{i}, b_{-i}\right)
$$

for all b_{i}, for all b_{-i}, and for $i=1,2$.

1. Assume $b_{-i}>v_{i}$

- $u_{i}\left(v_{i}, b_{-i}\right)=0=u_{i}\left(b_{i}, b_{-i}\right)$ for any $b_{i}<b_{-i}$
- $u_{i}\left(b_{-i}, b_{-i}\right)=\left(v_{i}-b_{-i}\right) / 2<0$
- $u_{i}\left(b_{i}, b_{-i}\right)=\left(b_{i}-b_{-i}\right)<0$ for any $b_{i}>b_{-i}$

2. Assume now $b_{-i}=v_{i}$

3. Assume now $b_{-i}<v_{i}$

4 Dynamic Games

- Nicholson, Ch. 15, pp. 449-454.[OLD: Ch. 10, pp. 256-259]
- Dynamic games: one player plays after the other
- Decision trees
- Decision nodes
- Strategy is a plan of action at each decision node
- Example: battle of the sexes game

$$
\begin{array}{ccc}
\text { She } \backslash \text { He } & \text { Ballet } & \text { Football } \\
\text { Ballet } & 2,1 & 0,0 \\
\text { Football } & 0,0 & 1,2
\end{array}
$$

- Dynamic version: she plays first
- Subgame-perfect equilibrium. At each node of the tree, the player chooses the strategy with the highest payoff, given the other players' strategy
- Backward induction. Find optimal action in last period and then work backward
- Solution
- Example 2: Entry Game

$$
\begin{array}{ccc}
1 \backslash 2 & \text { Enter } & \text { Do not Enter } \\
\text { Enter } & -1,-1 & 10,0 \\
\text { Do not Enter } & 0,5 & 0,0
\end{array}
$$

- Exercise. Dynamic version.
- Coordination games solved if one player plays first
- Can use this to study finitely repeated games
- Suppose we play the prisoner's dilemma game ten times.

$$
\begin{array}{ccc}
1 \backslash 2 & D & N D \\
D & -4,-4 & -1,-5 \\
N D & -5,-1 & -2,-2
\end{array}
$$

- What is the subgame perfect equilibrium?

5 Next lecture

- Stackelberg duopoly
- General equilibrium
- Edgeworth Box

