Economics 101A (Lecture 22)

Stefano DellaVigna

November 23, 2004

Outline

1. Dynamic Games

2. Oligopoly: Stackelberg
3. General Equilibrium: Introduction
4. Edgeworth Box: Pure Exchange

5. Barter

1 Dynamic Games

- Nicholson, Ch. 15, pp. 449-454.[OLD: Ch. 10, pp. 256-259]
- Dynamic games: one player plays after the other
- Decision trees
- Decision nodes
- Strategy is a plan of action at each decision node
- Example: battle of the sexes game

$$
\begin{array}{ccc}
\text { She } \backslash \text { He } & \text { Ballet } & \text { Football } \\
\text { Ballet } & 2,1 & 0,0 \\
\text { Football } & 0,0 & 1,2
\end{array}
$$

- Dynamic version: she plays first
- Subgame-perfect equilibrium. At each node of the tree, the player chooses the strategy with the highest payoff, given the other players' strategy
- Backward induction. Find optimal action in last period and then work backward
- Solution
- Example 2: Entry Game

$$
\begin{array}{ccc}
1 \backslash 2 & \text { Enter } & \text { Do not Enter } \\
\text { Enter } & -1,-1 & 10,0 \\
\text { Do not Enter } & 0,5 & 0,0
\end{array}
$$

- Exercise. Dynamic version.
- Coordination games solved if one player plays first
- Can use this to study finitely repeated games
- Suppose we play the prisoner's dilemma game ten times.

$$
\begin{array}{ccc}
1 \backslash 2 & D & N D \\
D & -4,-4 & -1,-5 \\
N D & -5,-1 & -2,-2
\end{array}
$$

- What is the subgame perfect equilibrium?
- When does repetition lead to cooperation in Prisoner Dilemma?
- Need infinite repetition
- At every period probability p that game will be played again
- Strategy:
- Cooperate (play $N D$)
- If someone defected (played D) in past, defect (play D) thereafter
- See Econ 104 for more on this

2 Oligopoly: Stackelberg

- Setting as in problem set.
- 2 Firms
- Cost: $c(y)=c y$, with $c>0$
- Demand: $p(Y)=a-b Y$, with $a>c>0$ and $b>0$
- Difference: Firm 1 makes the quantity decision first
- Use subgame perfect equilibrium
- Solution:
- Solve first for Firm 2 decision as function of Firm 1 decision:

$$
\max _{y_{2}}\left(a-b y_{2}-b y_{1}^{*}\right) y_{2}-c y_{2}
$$

- F.o.c.:

$$
a-2 b y_{2}^{*}-b y_{1}^{*}-c=0
$$

or

$$
\begin{gathered}
y_{2}^{*}=\frac{a-c}{2 b}-\frac{y_{1}^{*}}{2} \\
p_{D}^{*}=a-b Y_{D}^{*}=a-b\left(2 \frac{a-c}{3 b}\right)=\frac{1}{3} a+\frac{2}{3} c .
\end{gathered}
$$

- Firm 1 takes this response into account in the maximization:

$$
\max _{y_{1}}\left(a-b y_{1}-b y_{2}^{*}\left(y_{1}\right)\right) y_{1}-c y_{1}
$$

or

$$
\max _{y_{1}}\left(a-b y_{1}-b\left(\frac{a-c}{2 b}-\frac{y_{1}}{2}\right)\right) y_{1}-c y_{1}
$$

- F.o.c.:

$$
a-2 b y_{1}-\frac{(a-c)}{2}+b y_{1}-c=0
$$

or

$$
y_{1}^{*}=\frac{a-c}{2 b}
$$

and

$$
y_{2}^{*}=\frac{a-c}{2 b}-\frac{y_{1}^{*}}{2}=\frac{a-c}{2 b}-\frac{a-c}{4 b}=\frac{a-c}{4 b}
$$

- Total production:

$$
Y_{D}^{*}=y_{1}^{*}+y_{2}^{*}=3 \frac{a-c}{4 b}
$$

- Price equals

$$
p^{*}=a-b\left(\frac{3}{4} \frac{a-c}{b}\right)=\frac{1}{4} a+\frac{3}{4} c
$$

- Compare to monopoly:

$$
y_{M}^{*}=\frac{a-c}{2 b}
$$

and

$$
p_{M}^{*}=\frac{a+c}{2}
$$

- Compare to Cournot:

$$
Y_{D}^{*}=y_{1}^{*}+y_{2}^{*}=2 \frac{a-c}{3 b}
$$

and

$$
p_{D}^{*}=\frac{1}{3} a+\frac{2}{3} c .
$$

- Figure
- Compare with Cournot outcome

3 General Equilibrium: Introduction

- So far, we looked at consumers
- Demand for goods
- Choice of leisure and work
- Choice of risky activities
- We also looked at producers:
- Production in perfectly competitive firm
- Production in monopoly
- Production in oligopoly
- We also combined consumers and producers:
- Supply
- Demand
- Market equilibrium
- Partial equilibrium: one good at a time
- General equilibrium: Demand and supply for all goods!
- supply of young worker $\uparrow \Longrightarrow$ wage of experienced workers?
- minimum wage $\uparrow \Longrightarrow$ effect on higher earners?
- steel tariff $\uparrow \Longrightarrow$ effect on car price

4 Edgeworth Box: Pure Exchange

- Nicholson, Ch. 12, pp. 335-338, 369-370 [OLD: Ch. 16, pp. 422-425]
- 2 consumers in economy: $i=1,2$
- 2 goods, x_{1}, x_{2}
- Endowment of consumer $i, \operatorname{good} j: \omega_{j}^{i}$
- Total endowment: $\left(\omega_{1}, \omega_{2}\right)=\left(\omega_{1}^{1}+\omega_{1}^{2}, \omega_{2}^{1}+\omega_{2}^{2}\right)$
- Draw Edgeworth box
- Draw preferences of agent 1
- Draw preferences of agent 2
- Consumption of consumer $i, \operatorname{good} j: x_{j}^{i}$
- Feasible consumption:

$$
x_{i}^{1}+x_{i}^{2} \leq \omega_{i} \text { for all } i
$$

- If preferences monotonic, $x_{i}^{1}+x_{i}^{2}=\omega_{i}$ for all i
- Can map consumption levels into box

5 Barter

- Consumers can trade goods 1 and 2
- Allocation $\left(\left(x_{1}^{1 *}, x_{2}^{1 *}\right),\left(x_{1}^{2 *}, x_{2}^{2 *}\right)\right)$ can be outcome of barter if:
- Individual rationality.

$$
u_{i}\left(x_{1}^{i *}, x_{2}^{i *}\right) \geq u_{i}\left(\omega_{1}^{i}, \omega_{2}^{i}\right) \text { for all } i
$$

- Pareto Efficiency. There is no allocation $\left(\left(\hat{x}_{1}^{1}, \hat{x}_{2}^{1}\right),\left(\hat{x}_{1}^{2}, \hat{x}_{2}^{2}\right)\right)$ such that

$$
u_{i}\left(\hat{x}_{1}^{i}, \hat{x}_{2}^{i}\right) \geq u_{i}\left(x_{1}^{i *}, x_{2}^{i *}\right) \text { for all } i
$$

with strict inequality for at least one agent.

- Barter outcomes in Edgeworth box
- Endowments $\left(\omega_{1}, \omega_{2}\right)$
- Area that satisfies individual rationality condition
- Points that satisfy pareto efficiency
- Pareto set. Set of points where indifference curves are tangent
- Contract curve. Subset of Pareto set inside the individually rational area.
- Contract curve $=$ Set of barter equilibria
- Multiple equilibria. Depends on bargaining power.
- Bargaining is time- and information-intensive procedure
- What if there are prices instead?

6 Next lecture

- Example of General equilibrium
- General Equilibrium with Prices

