# Economics 101A (Lecture 7) 

Stefano DellaVigna

September 21, 2004

## Outline

# 1. Comparative Statics (introduction) 

2. Income changes
3. Price Changes
4. Expenditure minimization
5. Slutsky Equation: Intuition

## 1 Comparative Statics (introduction)

- Nicholson, Ch. 5, pp. 121-131 [OLD: 116-128].
- Utility maximization yields $x_{i}^{*}=x_{i}^{*}\left(p_{1}, p_{2}, M\right)$
- Quantity consumed as a function of income and price
- What happens to quantity consumed $x_{i}^{*}$ as prices or income varies?
- Simple case: Equal increase in prices and income.
- $M^{\prime}=t M, p_{1}^{\prime}=t p_{1}, p_{2}^{\prime}=t p_{2}$.
- Compare $x^{*}\left(t M, t p_{1}, t p_{2}\right)$ and $x^{*}\left(M, p_{1}, p_{2}\right)$.
- What happens?
- Write budget line: $t p_{1} x_{1}+t p_{2} x_{2}=t M$
- Demand is homogeneous of degree 0 in $\mathbf{p}$ and $M$ :

$$
x^{*}\left(t M, t p_{1}, t p_{2}\right)=t^{0} x^{*}\left(M, p_{1}, p_{2}\right)=x^{*}\left(M, p_{1}, p_{2}\right)
$$

- Consider Cobb-Douglas Case:

$$
x_{1}^{*}=\frac{\alpha}{\alpha+\beta} M / p_{1}, x_{2}^{*}=\frac{\beta}{\alpha+\beta} M / p_{2}
$$

- What is $\partial x^{*} / \partial M$ ?
- What is $\partial x^{*} / \partial p_{x}$ ?
- What is $\partial x^{*} / \partial p_{y}$ ?
- General results?


## 2 Income changes

- Income increases from $M$ to to $M^{\prime}>M$.
- Budget line $\left(p_{1} x_{1}+p_{2} x_{2}=M\right)$ shifts out:

$$
x_{2}=\frac{M^{\prime}}{p_{2}}-x_{1} \frac{p_{1}}{p_{2}}
$$

- New optimum?
- Engel curve: $x_{i}^{*}(M)$ : demand for good $i$ as function of income $M$ holding fixed prices $p_{1}, p_{2}$
- Does $x_{i}^{*}$ increase with $M$ ?
- Yes. Good $i$ is normal
- No. Good $i$ is inferior


## 3 Price changes

- Price of good $i$ increases from $p_{i}$ to to $p_{i}^{\prime}>p_{i}$
- For example, decrease in price of good $2, p_{2}^{\prime}<p_{2}$
- Budget line tilts:

$$
x_{2}=\frac{M}{p_{2}^{\prime}}-x_{1} \frac{p_{1}}{p_{2}^{\prime}}
$$

- New optimum?
- Demand curve: $x_{i}^{*}\left(p_{i}\right)$ : demand for good $i$ as function of own price holding fixed $p_{j}$ and $M$
- Odd convention of economists: plot price $p_{i}$ on vertical axis and quantity $x_{i}$ on horizontal axis. Better get used to it!
- Does $x_{i}^{*}$ decrease with $p_{i}$ ?
- Yes. Most cases
- No. Good $i$ is Giffen
- Ex.: Potatoes in Ireland
- Do not confuse with Veblen effect for luxury goods or informational asimmetries: these effects are real, but not included in current model


## 4 Expenditure minimization

- Nicholson, Ch. 4, pp. 109-113 [OLD: 105-108].
- Solve problem EMIN (minimize expenditure):

$$
\begin{aligned}
& \min p_{1} x_{1}+p_{2} x_{2} \\
& \text { s.t. } u\left(x_{1}, x_{2}\right) \geq \bar{u}
\end{aligned}
$$

- Choose bundle that attains utility $\bar{u}$ with minimal expenditure
- Ex.: You are choosing combination CDs/restaurant to make a friend happy
- If utility $u$ strictly increasing in $x_{i}$, can maximize s.t. equality
- Denote by $h_{i}\left(p_{1}, p_{2}, \bar{u}\right)$ solution to EMIN problem
- $h_{i}\left(p_{1}, p_{2}, \bar{u}\right)$ is Hicksian or compensated demand
- Graphically:
- Fix indifference curve at level $\bar{u}$
- Consider budget sets with different $M$
- Pick budget set which is tangent to indifference curve
- Optimum coincides with optimum of Utility Maximization!
- Formally:

$$
h_{i}\left(p_{1}, p_{2}, \bar{u}\right)=x_{i}^{*}\left(p_{1}, p_{2}, e\left(p_{1}, p_{2}, \bar{u}\right)\right)
$$

- Expenditure function is expenditure at optimum
- $e\left(p_{1}, p_{2}, \bar{u}\right)=p_{1} h_{1}\left(p_{1}, p_{2}, \bar{u}\right)+p_{2} h_{2}\left(p_{1}, p_{2}, \bar{u}\right)$
- $h_{i}\left(p_{i}\right)$ is Hicksian or compensated demand function
- Is $h_{i}$ always decreasing in $p_{i}$ ? Yes!
- Graphical proof: moving along a convex indifference curve
- (For non-convex indifferent curves, still true)
- Using first order conditions:

$$
\begin{gathered}
L\left(x_{1}, x_{2}, \lambda\right)=p_{1} x_{1}+p_{2} x_{2}-\lambda\left(u\left(x_{1}, x_{2}\right)-\bar{u}\right) \\
\frac{\partial L}{\partial x_{i}}=p_{i}-\lambda u_{i}^{\prime}\left(x_{1}, x_{2}\right)=0
\end{gathered}
$$

- Write as ratios:

$$
\frac{u_{1}^{\prime}\left(x_{1}, x_{2}\right)}{u_{2}^{\prime}\left(x_{1}, x_{2}\right)}=\frac{p_{1}}{p_{2}}
$$

- $M R S=$ ratio of prices as in utility maximization!
- However: different constraint $\Longrightarrow \lambda$ is different
- Example 1: Cobb-Douglas utility

$$
\begin{aligned}
& \min p_{1} x_{1}+p_{2} x_{2} \\
& \text { s.t. } x_{1}^{\alpha} x_{2}^{1-\alpha} \geq \bar{u}
\end{aligned}
$$

- Lagrangean $=$
- F.o.c.:
- Solution: $h_{1}^{*}=$

$$
h_{2}^{*}=
$$

- $\partial h_{i}^{*} / \partial p_{i}<0, \partial h_{i}^{*} / \partial p_{j}>0, j \neq i$


# 5 Slutsky equation: Intuition 

- Now: go back to Utility Max. in case where $p_{2}$ increases to $p_{2}^{\prime}>p_{2}$
- What is $\partial x_{2}^{*} / \partial p_{2}$ ? Decompose effect:

1. Substitution effect of an increase in $p_{i}$
$-\partial h_{2}^{*} / \partial p_{2}$, that is change in EMIN point as $p_{2}$ descreases

- Moving along an indifference curve
- Certainly $\partial h_{2}^{*} / \partial p_{2}<0$

2. Income effect of an increase in $p_{i}$

- $\partial x_{2}^{*} / \partial M$, increase in consumption of good 2 due to increased income
- Shift out a budget line
- $\partial x_{2}^{*} / \partial M>0$ for normal goods, $\partial x_{2}^{*} / \partial M<$ 0 for inferior goods


## 6 Next Lectures

- More comparative statics:
- Intuition
- Slutzky Equation
- Then moving on to applications:
- Labor Supply
- Intertemporal choice
- Economics of Altruism

