Economics 101A (Lecture 8)

Stefano DellaVigna

September 23, 2004

Outline

1. Expenditure Minimization II

2. Slutzky equation
3. Complements and substitutes
4. Do utility functions exist?
5. Labor Supply I

1 Expenditure minimization II

- Solve problem EMIN (minimize expenditure):

$$
\begin{aligned}
& \min p_{1} x_{1}+p_{2} x_{2} \\
& \text { s.t. } u\left(x_{1}, x_{2}\right) \geq \bar{u}
\end{aligned}
$$

- $h_{i}\left(p_{1}, p_{2}, \bar{u}\right)$ is Hicksian or compensated demand
- Is h_{i} always decreasing in p_{i} ? Yes!
- Graphical proof: moving along a convex indifference curve
- (For non-convex indifferent curves, still true)

2 Slutsky equation

- Now: go back to Utility Max. in case where p_{2} increases to $p_{2}^{\prime}>p_{2}$
- What is $\partial x_{2}^{*} / \partial p_{2}$? Decompose effect:

1. Substitution effect of an increase in p_{i}

- $\partial h_{2}^{*} / \partial p_{2}$, that is change in EMIN point as p_{2} descreases
- Moving along an indifference curve
- Certainly $\partial h_{2}^{*} / \partial p_{2}<0$

2. Income effect of an increase in p_{i}

- $\partial x_{2}^{*} / \partial M$, increase in consumption of good 2 due to increased income
- Shift out a budget line
- $\partial x_{2}^{*} / \partial M>0$ for normal goods, $\partial x_{2}^{*} / \partial M<$ 0 for inferior goods
- Nicholson, Ch. 5, pp. 135-138 [OLD: 131-136].
- $h_{i}\left(p_{1}, p_{2}, \bar{u}\right)=x_{i}^{*}\left(p_{1}, p_{2}, e\left(p_{1}, p_{2}, \bar{u}\right)\right)$
- How does the Hicksian demand change if price p_{i} changes?

$$
\frac{d h_{i}}{d p_{i}}=\frac{\partial x_{i}^{*}(\mathbf{p}, e)}{\partial p_{i}}+\frac{\partial x_{i}^{*}(\mathbf{p}, e)}{\partial M} \frac{\partial e(\mathbf{p}, \bar{u})}{\partial p_{i}}
$$

- What is $\frac{\partial e(\mathbf{p}, \bar{u})}{\partial p_{i}}$? Envelope theorem:

$$
\begin{aligned}
\frac{\partial e(\mathbf{p}, \bar{u})}{\partial p_{i}} & =\frac{\partial}{\partial p_{i}}\left[p_{1} h_{1}^{*}+p_{2} h_{2}^{*}-\lambda\left(u\left(h_{1}^{*}, h_{2}^{*}, \bar{u}\right)-\bar{u}\right)\right] \\
& =h_{i}^{*}\left(p_{1}, p_{2}, \bar{u}\right)=x_{i}^{*}\left(p_{1}, p_{2}, e(p, \bar{u})\right)
\end{aligned}
$$

- Therefore

$$
\frac{\partial h_{i}(\mathbf{p}, \bar{u})}{\partial p_{i}}=\frac{\partial x_{i}^{*}(\mathbf{p}, e)}{\partial p_{i}}+\frac{\partial x_{i}^{*}(\mathbf{p}, e)}{\partial M} x_{1}^{*}\left(p_{1}, p_{2}, e\right)
$$

- Rewrite as

$$
\begin{aligned}
\frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial p_{i}}= & \frac{\partial h_{i}(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_{i}} \\
& -x_{1}^{*}\left(p_{1}, p_{2}, M\right) \frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial M}
\end{aligned}
$$

- Important result! Allows decomposition into substitution and income effect
- Two effects of change in price:

1. Substitution effect negative: $\frac{\partial h_{i}(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_{i}}<0$
2. Income effect: $-x_{1}^{*}\left(p_{1}, p_{2}, M\right) \frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial M}$

- negative if good i is normal $\left(\frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial M}>0\right)$
- positive if good i is inferior $\left(\frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial M}<0\right)$
- Overall, sign of $\frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial p_{i}}$?
- negative if good i is normal
- it depends if good i is inferior
- Example 1 (ctd.): Cobb-Douglas. Apply Slutsky equation
- $x_{i}^{*}=\alpha M / p_{i}$
- $h_{i}^{*}=$
- Derivative of Hicksian demand with respect to price:

$$
\frac{\partial h_{i}(\mathbf{p}, \bar{u})}{\partial p_{i}}=
$$

- Rewrite h_{i}^{*} as function of $m: h_{i}(\mathbf{p}, v(\mathbf{p}, M))$
- Compute $v(\mathbf{p}, M)=$
- Substitution effect:

$$
\frac{\partial h_{i}(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_{i}}=
$$

- Income effect:

$$
-x_{i}^{*}\left(p_{1}, p_{2}, M\right) \frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial M}=
$$

- Sum them up to get

$$
\frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial p_{i}}=
$$

- It works!

3 Complements and substitutes

- Nicholson, Ch. 6, pp. 161-166 [OLD: 152-158].
- How about if price of another good changes?
- Generalize Slutsky equation
- Slutsky Equation:

$$
\begin{aligned}
\frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial p_{j}}= & \frac{\partial h_{i}(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_{j}} \\
& -x_{j}^{*}\left(p_{1}, p_{2}, M\right) \frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial M}
\end{aligned}
$$

- Substitution effect

$$
\frac{\partial h_{i}(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_{j}}>0
$$

for $n=2$ (two goods). Ambiguous for $n>2$.

- Income effect:

$$
-x_{j}^{*}\left(p_{1}, p_{2}, M\right) \frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial M}
$$

- negative if good i is normal
- positive if good i is inferior
- How do we define complements and substitutes?
- Def. 1. Goods i and j are gross substitutes at price p and income M if

$$
\frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial p_{j}}>0
$$

- Def. 2. Goods i and j are gross complements at price \mathbf{p} and income M if

$$
\frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial p_{j}}<0
$$

- Example 1 (ctd.): $x_{1}^{*}=\alpha M / p_{1}, x_{2}^{*}=\beta M / p_{2}$.
- Gross complements or gross substitutes? Neither!
- Notice: $\frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial p_{j}}$ is usually different from $\frac{\partial x_{j}^{*}(\mathbf{p}, M)}{\partial p_{i}}$
- Better definition.
- Def. 3. Goods i and j are net substitutes at price p and income M if

$$
\frac{\partial h_{i}^{*}(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_{j}}=\frac{\partial h_{j}^{*}(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_{i}}>0
$$

- Def. 4. Goods i and j are net complements at price \mathbf{p} and income M if

$$
\frac{\partial h_{i}^{*}(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_{j}}=\frac{\partial h_{j}^{*}(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_{i}}<0
$$

- Example 1 (ctd.): $h_{1}^{*}=\bar{u}\left(\frac{\alpha}{1-\alpha} \frac{p_{2}}{p_{1}}\right)^{1-\alpha}$
- Net complements or net substitutes? Net substitutes!

4 Do utility functions exist?

- Preferences and utilities are theoretical objects
- Many different ways to write them
- How do we tie them to the world?
- Use actual choices - revealed preferences approach
- Typical economists' approach. Compromise of:
- realism
- simplicity
- Assume a class of utility functions (CES, Cobb-Douglas...) with free parameters
- Estimate the parameters using the data

5 Labor Supply I

- Nicholson Ch. 16, pp. 477-484 [OLD: Ch. 22, pp. 606-613.]
- Labor supply decision: how much to work in a day.
- Goods: consumption good c, hours worked h
- Price of good p, hourly wage w
- Consumer spends $24-h=l$ hours in units of leisure
- Utilify function: $u(c, l)$
- Budget constraint?
- Income of consumer: $M+w h=M+w(24-l)$
- Budget constraint: $p c \leq M+w(24-l)$ or

$$
p c+w l \leq M+24 w
$$

- Notice: leisure l is a consumption good with price w. Why?
- General category: opportunity cost
- Instead of enjoying one hour of TV, I could have worked one hour and gained wage w.
- You should value the marginal hour of TV w !
- Opportunity costs are very important!
- Example 2. CostCo has a warehouse in SoMa
- SoMa used to have low cost land, adequate for warehouses
- Price of land in SoMa triples in 10 years.
- Should firm relocate the warehouse?
- Did costs of staying in SoMa go up?
- No.
- Did the opportunity cost of staying in SoMa go up?
- Yes!
- Firm can sell at high price and purchase land in cheaper area.
- Let's go back to labor supply
- Maximization problem is

$$
\begin{aligned}
& \max u(c, l) \\
& \text { s.t. } p c+w l \leq M+24 w
\end{aligned}
$$

- Standard problem (except for $24 w$)
- First order conditions
- Continue on Tu

