Economics 101A (Lecture 1)

Stefano DellaVigna

August 31, 2004

Outline

- 1. Who are we?
- 2. Prerequisites for the course
- 3. A test in maths
- 4. The economics of discrimination
- 5. Optimization with 1 variable
- 6. Multivariate optimization (Today or on Th)

1 Who are we?

Stefano DellaVigna

- Assistant Professor, Department of Economics
- Bocconi (Italy) undergraduate (Econ.), Harvard PhD (Econ.)
- Psychology and economics, applied microeconomics, behavioral finance, aging, media

Ada Chen (2 Sections)

Adriana Espinosa (1 Section)

- Graduate Students, Department of Economics
- Rooms: To be announced

2 Prerequisites

- Mathematics
 - Good knowledge of multivariate calculus Maths
 1A or 1B
 - Basic knowledge of probability theory and matrix algebra

- Economics
 - Knowledge of fundamentals Ec1 or 2 or 3
 - High interest!

3 A Test in Maths

- 1. Can you differentiate the following functions with respect to x?
 - (a) $y = \exp(x)$

(b)
$$y = a + bx + cx^2$$

(c)
$$y = \frac{\exp(x)}{b^x}$$

- 2. Can you partially differentiate these functions with respect to x and w?
 - (a) $y = axw + bx c\frac{x}{w} + d\sqrt{xw}$
 - (b) $y = \exp(x/w)$
 - (c) $y = \int_0^1 (x + aw^2 + xs) ds$

3. Can you plot the following functions of one variable?

(a)
$$y = \exp(x)$$

(b)
$$y = -x^2$$

(c)
$$y = \exp(-x^2)$$

4. Are the following functions concave, convex or neither?

(a)
$$y = x^3$$

(b)
$$y = -\exp(x)$$

(c) $y = x^{.5}y^{.5}$ for x > 0, y > 0

- 5. Consider an urn with 20 red and 40 black balls?
 - (a) What is the probability of drawing a red ball?
 - (b) What is the probability of drawing a black ball?

6. What is the determinant of the following matrices?

(a)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 10 & 10 \\ 10 & 10 \end{bmatrix}$

4 The economics of discrimination

- Ok, I got the maths. But where is the economics?
- Workers:
 - -A and B. They produce 1 widget per hour
 - Both have reservation wage $ar{u}$
- Firm:
 - sells widgets at price $p > \overline{u}$ (assume p given)
 - dislikes worker B
 - Maximizes profits (p* no of widgets cost of labor) disutility d if employs B
- Wages and employment in this industry?

• Employment

- Net surplus from employing $A:\ p-\bar{u}$
- Net surplus from employing $B{:}~p-\bar{u}-d$
- If $\bar{u} Firm employs <math display="inline">A$ but not B
- If $\bar{u} + d < p$, Firm employs both

• What about wages?

- Case I. Firm monopolist and no worker union
 - Firm maximizes profits and gets all the net surplus
 - Wages of A and B equal \bar{u}
- Case II. Firm monopolist and worker union
 - Firm and worker get half of the net surplus each

- Wage of A equals
$$\overline{u} + .5 * (p - \overline{u})$$

- Wage of B equals $\bar{u} + .5 * (p \bar{u} d)$
- Case III. Perfect competition among firms that discriminate (d > 0)
 - Prices are lowered to the cost of production
 - Wage of A equals p
 - -B is not employed

- The magic of competition
- Case IIIb. Perfect competition + At least one firm does not discriminate (d = 0)
 - This firm offers wage p to both workers
 - What happens to worker B?
 - She goes to the firm with d = 0!
 - In equilibrium now:
 - $\ast\,$ Wage of A equals p
 - * Wage of B equals p as well!

- Is this true? Any evidence?
- S. Black and P. Strahan, AER 2001.
 - Local monopolies in banking industry until mid
 70s
 - Mid 70s: deregulation
 - From local monopolies to perfect competition.
 - Wages?
 - * Wages fall by 6.1 percent
 - Discrimination?
 - * Wages fall by 12.5 percent for men
 - * Wages fall by 2.9 percent for women
 - * Employment of women as managers increases by 10 percent

5 Optimization with 1 variable

- Nicholson, Ch.2, pp. 22-26
- Example. Function $y = -x^2$
- What is the maximum?

- Maximum is at 0
- General method?

- Sure! Use derivatives
- Derivative is slope of the function at a point:

$$\frac{\partial f(x)}{\partial x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

• Necessary condition for maximum x^* is

$$\frac{\partial f(x^*)}{\partial x} = 0 \tag{1}$$

• Try with $y = -x^2$.

•
$$\frac{\partial f(x)}{\partial x} = 0 \Longrightarrow x^* =$$

- Does this guarantee a maximum? No!
- Consider the function $y = x^3$

•
$$\frac{\partial f(x)}{\partial x} = 0 \Longrightarrow x^* =$$

• Plot
$$y = x^3$$
.

• Sufficient condition for a (local) maximum:

$$\frac{\partial f(x^*)}{\partial x} = 0 \text{ and } \left. \frac{\partial^2 f(x)}{\partial^2 x} \right|_{x^*} < 0 \qquad (2)$$

- At a maximum, $f(x^* + h) f(x^*) < 0$ for all h.
- Taylor Rule: $f(x^*+h) f(x^*) = \frac{\partial f(x^*)}{\partial x}h + \frac{1}{2}\frac{\partial^2 f(x^*)}{\partial^2 x}h^2 + higher order terms.$

• Notice:
$$\frac{\partial f(x^*)}{\partial x} = 0.$$

•
$$f(x^* + h) - f(x^*) < 0$$
 for all $h \Longrightarrow \frac{\partial^2 f(x^*)}{\partial^2 x} h^2 < 0$
 $0 \Longrightarrow \frac{\partial^2 f(x^*)}{\partial^2 x} < 0$

• Careful: Maximum may not exist: $y = \exp(x)$

6 Multivariate optimization

- Nicholson, Ch.2, pp. 26-32
- Function from R^n to R: $y = f(x_1, x_2, ..., x_n)$
- Partial derivative with respect to x_i :

$$= \lim_{h \to 0} \frac{\frac{\partial f(x_1, \dots, x_n)}{\partial x_i}}{h}$$

- Slope along dimension i
- Total differential:

$$df = \frac{\partial f(x)}{\partial x_1} dx_1 + \frac{\partial f(x)}{\partial x_2} dx_2 + \dots + \frac{\partial f(x)}{\partial x_n} dx_n$$

• One important economic example

- Example 1: Partial derivatives of $y = f(L, K) = L^{.5}K^{.5}$
- $f'_L =$ (marginal productivity of labor)
- $f'_K =$ (marginal productivity of capital)

•
$$f_{L,K}'' =$$

Maximization over an open set (like R)

• Necessary condition for maximum x^* is

$$\frac{\partial f(x^*)}{\partial x_i} = \mathbf{0} \ \forall i \tag{3}$$

or in vectorial form

$$\nabla f(x) = 0$$

• These are commonly referred to as first order conditions (f.o.c.)

7 Next Class

- Multivariate Maximization (ctd.)
- Comparative Statics
- Implicit Function Theorem
- Envelope Theorem

- Going toward:
 - Preferences
 - Utility Maximization (where we get to apply maximization techniques the first time)