Economics 101A (Lecture 1)

Stefano DellaVigna

August 31, 2004

Outline

1. Who are we?

2. Prerequisites for the course
3. A test in maths
4. The economics of discrimination
5. Optimization with 1 variable
6. Multivariate optimization (Today or on Th)

1 Who are we?

Stefano DellaVigna

- Assistant Professor, Department of Economics
- Bocconi (Italy) undergraduate (Econ.), Harvard PhD (Econ.)
- Psychology and economics, applied microeconomics, behavioral finance, aging, media
- Evans 515

Ada Chen (2 Sections)

Adriana Espinosa (1 Section)

- Graduate Students, Department of Economics
- Rooms: To be announced

2 Prerequisites

- Mathematics
- Good knowledge of multivariate calculus - Maths 1 A or 1B
- Basic knowledge of probability theory and matrix algebra
- Economics
- Knowledge of fundamentals - Ec1 or 2 or 3
- High interest!

3 A Test in Maths

1. Can you differentiate the following functions with respect to x ?
(a) $y=\exp (x)$
(b) $y=a+b x+c x^{2}$
(c) $y=\frac{\exp (x)}{b^{x}}$
2. Can you partially differentiate these functions with respect to x and w ?
(a) $y=a x w+b x-c \frac{x}{w}+d \sqrt{x w}$
(b) $y=\exp (x / w)$
(c) $y=\int_{0}^{1}\left(x+a w^{2}+x s\right) d s$
3. Can you plot the following functions of one variable?
(a) $y=\exp (x)$
(b) $y=-x^{2}$
(c) $y=\exp \left(-x^{2}\right)$
4. Are the following functions concave, convex or neither?
(a) $y=x^{3}$
(b) $y=-\exp (x)$
(c) $y=x^{5} y^{5}$ for $x>0, y>0$
5. Consider an urn with 20 red and 40 black balls?
(a) What is the probability of drawing a red ball?
(b) What is the probability of drawing a black ball?
6. What is the determinant of the following matrices?
(a) $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
(b) $A=\left[\begin{array}{ll}10 & 10 \\ 10 & 10\end{array}\right]$

4 The economics of discrimination

- Ok, I got the maths. But where is the economics?
- Workers:
- A and B. They produce 1 widget per hour
- Both have reservation wage \bar{u}
- Firm:
- sells widgets at price $p>\bar{u}$ (assume p given)
- dislikes worker B
- Maximizes profits ($p *$ no of widgets - cost of labor) - disutility d if employs B
- Wages and employment in this industry?

- Employment

- Net surplus from employing $A: p-\bar{u}$
- Net surplus from employing $B: p-\bar{u}-d$
- If $\bar{u}<p<\bar{u}+d$, Firm employs A but not B
- If $\bar{u}+d<p$, Firm employs both
- What about wages?
- Case I. Firm monopolist and no worker union
- Firm maximizes profits and gets all the net surplus
- Wages of A and B equal \bar{u}
- Case II. Firm monopolist and worker union
- Firm and worker get half of the net surplus each
- Wage of A equals $\bar{u}+.5 *(p-\bar{u})$
- Wage of B equals $\bar{u}+.5 *(p-\bar{u}-d)$
- Case III. Perfect competition among firms that discriminate $(d>0)$
- Prices are lowered to the cost of production
- Wage of A equals p
- B is not employed
- The magic of competition
- Case IIIb. Perfect competition + At least one firm does not discriminate $(d=0)$
- This firm offers wage p to both workers
- What happens to worker B ?
- She goes to the firm with $d=0$!
- In equilibrium now:
* Wage of A equals p
* Wage of B equals p as well!
- Is this true? Any evidence?
- S. Black and P. Strahan, AER 2001.
- Local monopolies in banking industry until mid 70s
- Mid 70s: deregulation
- From local monopolies to perfect competition.
- Wages?
* Wages fall by 6.1 percent
- Discrimination?
* Wages fall by 12.5 percent for men
* Wages fall by 2.9 percent for women
* Employment of women as managers increases by 10 percent

5 Optimization with 1 variable

- Nicholson, Ch.2, pp. 22-26
- Example. Function $y=-x^{2}$
- What is the maximum?
- Maximum is at 0
- General method?
- Sure! Use derivatives
- Derivative is slope of the function at a point:

$$
\frac{\partial f(x)}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- Necessary condition for maximum x^{*} is

$$
\begin{equation*}
\frac{\partial f\left(x^{*}\right)}{\partial x}=0 \tag{1}
\end{equation*}
$$

- Try with $y=-x^{2}$.
- $\frac{\partial f(x)}{\partial x}=$

$$
=0 \Longrightarrow x^{*}=
$$

- Does this guarantee a maximum? No!
- Consider the function $y=x^{3}$
- $\frac{\partial f(x)}{\partial x}=$

$$
=0 \Longrightarrow x^{*}=
$$

- Plot $y=x^{3}$.
- Sufficient condition for a (local) maximum:

$$
\begin{equation*}
\frac{\partial f\left(x^{*}\right)}{\partial x}=0 \text { and }\left.\frac{\partial^{2} f(x)}{\partial^{2} x}\right|_{x^{*}}<0 \tag{2}
\end{equation*}
$$

- At a maximum, $f\left(x^{*}+h\right)-f\left(x^{*}\right)<0$ for all h.
- Taylor Rule: $f\left(x^{*}+h\right)-f\left(x^{*}\right)=\frac{\partial f\left(x^{*}\right)}{\partial x} h+\frac{1}{2} \frac{\partial^{2} f\left(x^{*}\right)}{\partial^{2} x} h^{2}+$ higher order terms.
- Notice: $\frac{\partial f\left(x^{*}\right)}{\partial x}=0$.

$$
\begin{aligned}
& \text { - } f\left(x^{*}+h\right)-f\left(x^{*}\right)<0 \text { for all } h \Longrightarrow \frac{\partial^{2} f\left(x^{*}\right)}{\partial^{2} x} h^{2}< \\
& 0 \Longrightarrow \frac{\partial^{2} f\left(x^{*}\right)}{\partial^{2} x}<0
\end{aligned}
$$

- Careful: Maximum may not exist: $y=\exp (x)$

6 Multivariate optimization

- Nicholson, Ch.2, pp. 26-32
- Function from R^{n} to $R: y=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Partial derivative with respect to x_{i} :

$$
\begin{aligned}
& \frac{\partial f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{i}} \\
= & \lim _{h \rightarrow 0} \frac{f\left(x_{\left.1, \ldots, x_{i}+h, \ldots x_{n}\right)-f\left(x_{\left.1, \ldots, x_{i}, \ldots x_{n}\right)}^{h}\right.}^{h}\right.}{}
\end{aligned}
$$

- Slope along dimension i
- Total differential:

$$
d f=\frac{\partial f(x)}{\partial x_{1}} d x_{1}+\frac{\partial f(x)}{\partial x_{2}} d x_{2}+\ldots+\frac{\partial f(x)}{\partial x_{n}} d x_{n}
$$

- One important economic example
- Example 1: Partial derivatives of $y=f(L, K)=$ $L^{5} K^{.5}$
- $f_{L}^{\prime}=$
(marginal productivity of labor)
- $f_{K}^{\prime}=$
(marginal productivity of capital)
- $f_{L, K}^{\prime \prime}=$

Maximization over an open set (like R)

- Necessary condition for maximum x^{*} is

$$
\begin{equation*}
\frac{\partial f\left(x^{*}\right)}{\partial x_{i}}=0 \forall i \tag{3}
\end{equation*}
$$

or in vectorial form

$$
\nabla f(x)=0
$$

- These are commonly referred to as first order conditions (f.o.c.)

7 Next Class

- Multivariate Maximization (ctd.)
- Comparative Statics
- Implicit Function Theorem
- Envelope Theorem
- Going toward:
- Preferences
- Utility Maximization (where we get to apply maximization techniques the first time)

