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1 Implicit function theorem

• Multivariate implicit function theorem (Dini):
Consider a set of equations (f1(p1, ..., pn;x1, ..., xs) =
0; ...; fs(p1, ..., pn;x1, ..., xs) = 0), and a point
(p0,x0) solution of the equation. Assume:

1. f1, ..., fs continuous and differentiable in a neigh-
bourhood of (p0,x0);

(a) The following Jakobian matrix ∂f
∂x evaluated at

(p0,x0) has determinant different from 0:

∂f

∂x
=

⎛⎜⎜⎜⎝
∂f1
∂x1

∂f1
∂xs

... ... ...
∂fs
∂x1

... ∂fs
∂xs

⎞⎟⎟⎟⎠



• Then:

1. There is one and only set of functions x= g(p)

defined in a neighbourhood of p0 that satisfy
f(p, g(p)) = 0 and g(p0) =x0;

2. The partial derivative of xi with respect to pk is

∂gi
∂pk

= −
det

µ
∂(f1,...,fs)

∂(x1,...xi−1,pk,xi+1...,xs)

¶
det

³
∂f
∂x

´



• Example 2 (continued): Max h(x1, x2) = p1 ∗x21+
p2 ∗ x22 − 2x1 − 5x2

• f.o.c. x1 : 2p1 ∗ x1 − 2 = 0 = f1(p,x)

• f.o.c. x2 : 2p2 ∗ x2 − 5 = 0 = f2(p,x)

• Comparative statics of x∗1 with respect to p1?

• First compute det
³
∂f
∂x

´
⎛⎝ ∂f1

∂x1
∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

⎞⎠ = Ã !



• Then compute det
µ

∂(f1,...,fs)
∂(x1,...xi−1,pk,xi+1...,xs)

¶
⎛⎝ ∂f1

∂p1
∂f1
∂x2

∂f2
∂p1

∂f2
∂x2

⎞⎠ = Ã !

• Finally, ∂x1∂p1
=

• Why did you compute det
³
∂f
∂x

´
already?



2 Envelope Theorem

• You now know how x∗1 varies if p1 varies.

• How does the function h vary at the optimum as p1
varies?

• Differentiate h(x∗1(p1, p2), x
∗
2(p1, p2), p1, p2) with

respect to p1 :

dh(x∗1(p1, p2), x
∗
2(p1, p2), p1, p2)

dp1

=
∂h(x∗,p)

∂x1
∗ ∂x

∗
1(x

∗,p)
∂p1

+
∂h(x∗,p)

∂x2
∗ ∂x

∗
2(x

∗,p)
∂p1

+
∂h(x∗,p)

∂p1

• Can we say something about the first two terms?
They are zero!



• Envelope Theorem for unconstrained maximization.
Assume that you maximize function f(x;p) with re-
spect to x. Consider then the function f at the op-
timum, that is, f(x∗(p),p). The total differential
of this function with respect to pi equals the partial
derivative with respect to pi:

df(x∗(p),p)
dpi

=
∂f(x∗(p),p)

∂pi
.

• You can disregard the indirect effects. Graphical in-
tuition.



3 Convexity and concavity

• Function f from C ⊂ Rn to R is concave if

f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y)

for all x, y ∈ C and for all t ∈ [0, 1]

• Notice: C must be convex set, i.e., if x ∈ C and
y ∈ C, then tx+ (1− t)y ∈ C, for t ∈ [0, 1]

• Function f from C ⊂ Rn to R is strictly concave if

f(tx+ (1− t)y) > tf(x) + (1− t)f(y)

for all x, y ∈ C and for all t ∈ (0, 1)

• Function f from Rn to R is convex if−f is concave.



• Alternative characterization of convexity.

• A function f, twice differentiable, is concave if and
only if for all x the subdeterminants |Hi| of the
Hessian matrix have the property |H1| ≤ 0, |H2| ≥
0, |H3| ≤ 0, and so on.

• For the univariate case, this reduces to f 00 ≤ 0

• For the bivariate case, this reduces to f 00x,x ≤ 0 and
f 00x,x ∗ f 00y,y −

³
f 00x,y

´2 ≥ 0
• A twice-differentiable function is strictly concave if
the same property holds with strict inequalities.



• Examples.

1. For which values of a, b, and c is f (x) = ax3+
bx2 + cx + d is the function concave over R?
Strictly concave? Convex?

2. Is f (x, y) = −x2 − y2 concave?

• For Example 2, compute the Hessian matrix

— f 0x = , f 0y =

— f 00x,x = , f 00x,y =

— f 00y,x = , f 00y,y =

— Hessian matrix H :

H =

Ã
f 00x,x = f 00x,y =
f
00
y,x = f

00
y,y =

!

• Compute |H1| = f 00x,x and |H2| = f 00x,x ∗ f 00y,y −³
f 00x,y

´2



• Why are convexity and concavity important?

• Theorem. Consider a twice-differentiable concave
(convex) function over C ⊂ Rn. If the point x0
satisfies the fist order conditions, it is a global max-
imum (minimum).

• For the proof, we need to check that the second-
order conditions are satisfied.

• These conditions are satisfied by definition of con-
cavity!

• (We have only proved that it is a local maximum)



4 Constrained maximization

• Nicholson, Ch. 2, pp. 39—46

• So far unconstrained maximization on R (or open
subsets)

• What if there are constraints to be satisfied?

• Example 1: maxx,y x ∗ y subject to 3x+ y = 5

• Substitute it in: maxx,y x ∗ (5− 3x)

• Solution: x∗ =

• Example 2: maxx,y xy subject to x exp(y)+y exp(x) =
5

• Solution: ?



• Graphical intuition on general solution.

• Example 3: maxx,y f(x, y) = x ∗ y s.t. h(x, y) =
x2 + y2 − 1 = 0

• Draw 0 = h(x, y) = x2 + y2 − 1.

• Draw x ∗ y = K with K > 0. Vary K

• Where is optimum?

• Where dy/dx along curve xy = K equals dy/dx
along curve x2 + y2 − 1 = 0

• Write down these slopes.



• Idea: Use implicit function theorem.

• Heuristic solution of system

max
x,y

f(x, y)

s.t. h(x, y) = 0

• Assume:

— continuity and differentiability of h

— h0y 6= 0 (or h0x 6= 0)

• Implicit function Theorem: Express y as a function
of x (or x as function of y)!



• Write system as maxx f(x, g(x))

• f.o.c.: f 0x(x, g(x)) + f 0y(x, g(x)) ∗
∂g(x)
∂x = 0

• What is ∂g(x)∂x ?

• Substitute in and get: f 0x(x, g(x)) + f 0y(x, g(x)) ∗
(−h0x/h0y) = 0 or

f 0x(x, g(x))
f 0y(x, g(x))

=
h0x(x, g(x))
h0y(x, g(x))



• Lagrange Multiplier Theorem, necessary condi-
tion. Consider a problem of the type

max
x1,...,xn

f (x1, x2, ..., xn;p)

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
h1 (x1, x2, ..., xn;p) = 0
h2 (x1, x2, ..., xn;p) = 0

...
hm (x1, x2, ..., xn;p) = 0

with n > m. Let x∗ = x∗(p) be a local solution to
this problem.

• Assume:

— f and h differentiable at x∗

— the following Jacobian matrix at x∗ has maximal
rank

J =

⎛⎜⎜⎝
∂h1
∂x1
(x∗) ... ∂h1

∂xn
(x∗)

... ... ...
∂hm
∂x1

(x∗) ... ∂hm
∂xn

(x∗)

⎞⎟⎟⎠



• Then, there exists a vector λ = (λ1, ..., λm) such
that (x∗,λ) maximize the Lagrangean function

L(x,λ) = f(x;p)−
mX
j=0

λjhj(x;p)

• Case n = 2,m = 1.

• First order conditions are
∂f(x;p)

∂xi
− λ

∂h(x;p)

∂xi
= 0

for i = 1, 2

• Rewrite as
f 0x1
f 0x2

=
h0x1
h0x2



Constrained Maximization, Sufficient condition
for the case n = 2,m = 1.

• If x∗ satisfies the Lagrangean condition, and the de-
terminant of the bordered Hessian

H =

⎛⎜⎜⎜⎜⎝
0 − ∂h

∂x1
(x∗) − ∂h

∂x2
(x∗)

− ∂h
∂x1
(x∗) ∂2L

∂2x1
(x∗) ∂2L

∂x2∂x1
(x∗)

− ∂h
∂x2
(x∗) ∂2L

∂x1∂x2
(x∗) ∂2L

∂x2∂x2
(x∗)

⎞⎟⎟⎟⎟⎠
is positive, then x∗ is a constrained maximum.

• If it is negative, then x∗ is a constrained minimum.

• Why? This is just the Hessian of the Lagrangean L
with respect to λ, x1, and x2



• Example 4: maxx,y x2−xy+y2 s.t. x2+y2−p = 0

• maxx,y,λ x2 − xy + y2 − λ(x2 + y2 − p)

• F.o.c. with respect to x:

• F.o.c. with respect to y:

• F.o.c. with respect to λ:

• Candidates to solution?

• Maxima and minima?



5 Next Class

• Next class:

— Envelope Theorem II

— Preferences

— Utility Maximization (where we get to apply max-
imization techniques the first time)


