Economics 101A (Lecture 3)

Stefano DellaVigna

September 7, 2004

Outline

- 1. Implicit Function Theorem
- 2. Envelope Theorem
- 3. Convexity and concavity
- 4. Constrained Maximization

1 Implicit function theorem

- Multivariate implicit function theorem (Dini): Consider a set of equations (f₁(p₁,..., p_n; x₁,..., x_s) = 0; ...; f_s(p₁,..., p_n; x₁,..., x_s) = 0), and a point (p₀,x₀) solution of the equation. Assume:
 - 1. $f_1, ..., f_s$ continuous and differentiable in a neighbourhood of (p_0, x_0) ;
 - (a) The following Jakobian matrix $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$ evaluated at (p_0, x_0) has determinant different from 0:

$$\frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_s} \\ \dots & \dots & \dots \\ \frac{\partial f_s}{\partial x_1} & \dots & \frac{\partial f_s}{\partial xs} \end{pmatrix}$$

• Then:

- 1. There is one and only set of functions x = g(p)defined in a neighbourhood of p_0 that satisfy f(p, g(p)) = 0 and $g(p_0) = x_0$;
- 2. The partial derivative of x_i with respect to p_k is

$$\frac{\partial g_i}{\partial p_k} = -\frac{\det\left(\frac{\partial(f_1, \dots, f_s)}{\partial(x_1, \dots x_{i-1}, p_k, x_{i+1} \dots, x_s)}\right)}{\det\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)}$$

- Example 2 (continued): Max $h(x_1, x_2) = p_1 * x_1^2 + p_2 * x_2^2 2x_1 5x_2$
- f.o.c. $x_1 : 2p_1 * x_1 2 = 0 = f_1(p,x)$
- f.o.c. $x_2: 2p_2 * x_2 5 = 0 = f_2(p,x)$
- Comparative statics of x_1^* with respect to p_1 ?
- First compute det $\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)$

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{pmatrix} = \begin{pmatrix} & & \\ & & \end{pmatrix}$$

• Then compute det
$$\left(\frac{\partial(f_1,...,f_s)}{\partial(x_1,...x_{i-1},p_k,x_{i+1}...,x_s)}\right)$$

 $\left(\begin{array}{cc} \frac{\partial f_1}{\partial p_1} & \frac{\partial f_1}{\partial x_2}\\ \frac{\partial f_2}{\partial p_1} & \frac{\partial f_2}{\partial x_2} \end{array}\right) = \left(\begin{array}{cc} \end{array}\right)$

• Finally,
$$\frac{\partial x_1}{\partial p_1} =$$

• Why did you compute det $\left(\frac{\partial f}{\partial x}\right)$ already?

2 Envelope Theorem

- You now know how x_1^* varies if p_1 varies.
- How does the function *h* vary at the optimum as *p*₁ varies?
- Differentiate $h(x_1^*(p_1, p_2), x_2^*(p_1, p_2), p_1, p_2)$ with respect to p_1 :

$$=\frac{\frac{dh(\mathbf{x}_{1}^{*}(p_{1}, p_{2}), \mathbf{x}_{2}^{*}(p_{1}, p_{2}), p_{1}, p_{2})}{dp_{1}}}{\frac{dp_{1}}{\partial x_{1}} * \frac{\frac{\partial h(\mathbf{x}^{*}, \mathbf{p})}{\partial x_{1}}}{\frac{\partial p_{1}}{\partial p_{1}}} + \frac{\frac{\partial h(\mathbf{x}^{*}, \mathbf{p})}{\partial x_{2}} * \frac{\frac{\partial x_{2}^{*}(\mathbf{x}^{*}, \mathbf{p})}{\partial p_{1}}}{\frac{\partial p_{1}}{\partial p_{1}}} + \frac{\frac{\partial h(\mathbf{x}^{*}, \mathbf{p})}{\partial p_{1}}}{\frac{\partial p_{1}}{\partial p_{1}}}$$

• Can we say something about the first two terms? They are zero!

 Envelope Theorem for unconstrained maximization. Assume that you maximize function f(x; p) with respect to x. Consider then the function f at the optimum, that is, f(x*(p), p). The total differential of this function with respect to p_i equals the partial derivative with respect to p_i:

$$\frac{df(\mathbf{x}^*(\mathbf{p}),\mathbf{p})}{dp_i} = \frac{\partial f(\mathbf{x}^*(\mathbf{p}),\mathbf{p})}{\partial p_i}.$$

• You can disregard the indirect effects. Graphical intuition.

3 Convexity and concavity

• Function f from $C \subset \mathbb{R}^n$ to R is concave if

$$f(tx + (1 - t)y) \ge tf(x) + (1 - t)f(y)$$
for all $x, y \in C$ and for all $t \in [0, 1]$

- Notice: C must be convex set, i.e., if $x \in C$ and $y \in C$, then $tx + (1 t)y \in C$, for $t \in [0, 1]$
- Function f from $C \subset R^n$ to R is strictly concave if f(tx + (1 - t)y) > tf(x) + (1 - t)f(y)for all $x, y \in C$ and for all $t \in (0, 1)$
- Function f from \mathbb{R}^n to \mathbb{R} is convex if -f is concave.

- Alternative characterization of convexity.
- A function f, twice differentiable, is concave if and only if for all x the subdeterminants |H_i| of the Hessian matrix have the property |H₁| ≤ 0, |H₂| ≥ 0, |H₃| ≤ 0, and so on.
- For the univariate case, this reduces to $f'' \leq 0$
- For the bivariate case, this reduces to $f_{x,x}'' \leq 0$ and $f_{x,x}'' * f_{y,y}'' (f_{x,y}'')^2 \geq 0$
- A twice-differentiable function is strictly concave if the same property holds with strict inequalities.

• Examples.

1. For which values of a, b, and c is $f(x) = ax^3 + bx^2 + cx + d$ is the function concave over R? Strictly concave? Convex?

2. Is
$$f(x, y) = -x^2 - y^2$$
 concave?

- For Example 2, compute the Hessian matrix
 - $\begin{array}{ll}
 f'_{x} = & , f'_{y} = \\
 f''_{x,x} = & , f''_{x,y} = \\
 f''_{y,x} = & , f''_{y,y} = \\
 \end{array}$
 - Hessian matrix H :

$$H = \begin{pmatrix} f''_{x,x} = & f''_{x,y} = \\ f''_{y,x} = & f''_{y,y} = \end{pmatrix}$$

• Compute $|H_1| = f_{x,x}''$ and $|H_2| = f_{x,x}'' * f_{y,y}'' - \left(f_{x,y}''\right)^2$

- Why are convexity and concavity important?
- Theorem. Consider a twice-differentiable concave (convex) function over C ⊂ Rⁿ. If the point x₀ satisfies the fist order conditions, it is a global maximum (minimum).
- For the proof, we need to check that the secondorder conditions are satisfied.
- These conditions are satisfied by definition of concavity!
- (We have only proved that it is a local maximum)

4 Constrained maximization

- Nicholson, Ch. 2, pp. 39-46
- So far unconstrained maximization on R (or open subsets)
- What if there are constraints to be satisfied?
- Example 1: $\max_{x,y} x * y$ subject to 3x + y = 5
- Substitute it in: $\max_{x,y} x * (5 3x)$
- Solution: $x^* =$
- Example 2: max_{x,y} xy subject to x exp(y)+y exp(x) =
 5
- Solution: ?

- Graphical intuition on general solution.
- Example 3: $\max_{x,y} f(x,y) = x * y$ s.t. $h(x,y) = x^2 + y^2 1 = 0$
- Draw $0 = h(x, y) = x^2 + y^2 1$.
- Draw x * y = K with K > 0. Vary K
- Where is optimum?

- Where dy/dx along curve xy = K equals dy/dx along curve $x^2 + y^2 1 = 0$
- Write down these slopes.

- Idea: Use implicit function theorem.
- Heuristic solution of system

$$\max_{x,y} f(x,y)$$

s.t. $h(x,y) = 0$

- Assume:
 - continuity and differentiability of h

- $h'_y \neq 0$ (or $h'_x \neq 0$)

 Implicit function Theorem: Express y as a function of x (or x as function of y)! • Write system as $\max_x f(x, g(x))$

• f.o.c.:
$$f'_x(x,g(x)) + f'_y(x,g(x)) * \frac{\partial g(x)}{\partial x} = 0$$

• What is
$$\frac{\partial g(x)}{\partial x}$$
?

• Substitute in and get: $f'_x(x,g(x)) + f'_y(x,g(x)) * (-h'_x/h'_y) = 0$ or

$$\frac{f'_x(x,g(x))}{f'_y(x,g(x))} = \frac{h'_x(x,g(x))}{h'_y(x,g(x))}$$

• Lagrange Multiplier Theorem, necessary condition. Consider a problem of the type

s.t.
$$\begin{aligned} \max_{x_1,...,x_n} f\left(x_1, x_2, ..., x_n; \mathbf{p}\right) \\ & \begin{cases} h_1\left(x_1, x_2, ..., x_n; \mathbf{p}\right) = \mathbf{0} \\ h_2\left(x_1, x_2, ..., x_n; \mathbf{p}\right) = \mathbf{0} \\ & \dots \\ h_m\left(x_1, x_2, ..., x_n; \mathbf{p}\right) = \mathbf{0} \end{aligned}$$

with n > m. Let $\mathbf{x}^* = \mathbf{x}^*(\mathbf{p})$ be a local solution to this problem.

- Assume:
 - f and h differentiable at \boldsymbol{x}^*
 - the following Jacobian matrix at \mathbf{x}^{*} has maximal rank

$$J = \begin{pmatrix} \frac{\partial h_1}{\partial x_1}(\mathbf{x}^*) & \dots & \frac{\partial h_1}{\partial x_n}(\mathbf{x}^*) \\ \dots & \dots & \dots \\ \frac{\partial h_m}{\partial x_1}(\mathbf{x}^*) & \dots & \frac{\partial h_m}{\partial x_n}(\mathbf{x}^*) \end{pmatrix}$$

• Then, there exists a vector $\lambda = (\lambda_1, ..., \lambda_m)$ such that (\mathbf{x}^*, λ) maximize the Lagrangean function

$$L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}; \mathbf{p}) - \sum_{j=0}^{m} \lambda_j h_j(\mathbf{x}; \mathbf{p})$$

• Case
$$n = 2, m = 1$$
.

• First order conditions are

$$\frac{\partial f(\mathbf{x}; \mathbf{p})}{\partial x_i} - \lambda \frac{\partial h(\mathbf{x}; \mathbf{p})}{\partial x_i} = \mathbf{0}$$

for i = 1, 2

• Rewrite as

$$\frac{f_{x_1}'}{f_{x_2}'} = \frac{h_{x_1}'}{h_{x_2}'}$$

Constrained Maximization, Sufficient condition for the case n = 2, m = 1.

• If \mathbf{x}^* satisfies the Lagrangean condition, and the determinant of the bordered Hessian

$$H = \begin{pmatrix} 0 & -\frac{\partial h}{\partial x_1}(\mathbf{x}^*) & -\frac{\partial h}{\partial x_2}(\mathbf{x}^*) \\ -\frac{\partial h}{\partial x_1}(\mathbf{x}^*) & \frac{\partial^2 L}{\partial^2 x_1}(\mathbf{x}^*) & \frac{\partial^2 L}{\partial x_2 \partial x_1}(\mathbf{x}^*) \\ -\frac{\partial h}{\partial x_2}(\mathbf{x}^*) & \frac{\partial^2 L}{\partial x_1 \partial x_2}(\mathbf{x}^*) & \frac{\partial^2 L}{\partial x_2 \partial x_2}(\mathbf{x}^*) \end{pmatrix}$$

is positive, then \mathbf{x}^{*} is a constrained maximum.

- If it is negative, then \mathbf{x}^* is a constrained minimum.
- Why? This is just the Hessian of the Lagrangean L with respect to λ, x₁, and x₂

• Example 4: $\max_{x,y} x^2 - xy + y^2$ s.t. $x^2 + y^2 - p = 0$

•
$$\max_{x,y,\lambda} x^2 - xy + y^2 - \lambda(x^2 + y^2 - p)$$

- F.o.c. with respect to *y*:
- F.o.c. with respect to λ :
- Candidates to solution?
- Maxima and minima?

5 Next Class

- Next class:
 - Envelope Theorem II
 - Preferences
 - Utility Maximization (where we get to apply maximization techniques the first time)