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1. Constrained Maximization (from last lecture)

2. Envelope Theorem II

3. Preferences

4. Properties of Preferences

5. From Preferences to Utility



1 Constrained Maximization (ctnd)

• Lagrange Multiplier Theorem, necessary condi-
tion. Consider a problem of the type

max
x1,...,xn

f (x1, x2, ..., xn;p)

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
h1 (x1, x2, ..., xn;p) = 0
h2 (x1, x2, ..., xn;p) = 0

...
hm (x1, x2, ..., xn;p) = 0

with n > m. Let x∗ = x∗(p) be a local solution to
this problem.

• Assume:

— f and h differentiable at x∗

— the following Jacobian matrix at x∗ has maximal
rank

J =

⎛⎜⎜⎝
∂h1
∂x1
(x∗) ... ∂h1

∂xn
(x∗)

... ... ...
∂hm
∂x1

(x∗) ... ∂hm
∂xn

(x∗)

⎞⎟⎟⎠



• Then, there exists a vector λ = (λ1, ..., λm) such
that (x∗,λ) maximize the Lagrangean function

L(x,λ) = f(x;p)−
mX
j=0

λjhj(x;p)

• Case n = 2,m = 1.

• First order conditions are
∂f(x;p)

∂xi
− λ

∂h(x;p)

∂xi
= 0

for i = 1, 2

• Rewrite as
f 0x1
f 0x2

=
h0x1
h0x2



• Constrained Maximization, Sufficient condition
for the case n = 2,m = 1.

• If x∗ satisfies the Lagrangean condition, and the de-
terminant of the bordered Hessian

H =

⎛⎜⎜⎜⎜⎝
0 − ∂h

∂x1
(x∗) − ∂h

∂x2
(x∗)

− ∂h
∂x1
(x∗) ∂2L

∂2x1
(x∗) ∂2L

∂x2∂x1
(x∗)

− ∂h
∂x2
(x∗) ∂2L

∂x1∂x2
(x∗) ∂2L

∂x2∂x2
(x∗)

⎞⎟⎟⎟⎟⎠
is positive, then x∗ is a constrained maximum.

• If it is negative, then x∗ is a constrained minimum.

• Why? This is just the Hessian of the Lagrangean L
with respect to λ, x1, and x2



• Example 4: maxx,y x2−xy+y2 s.t. x2+y2−p = 0

• maxx,y,λ x2 − xy + y2 − λ(x2 + y2 − p)

• F.o.c. with respect to x:

• F.o.c. with respect to y:

• F.o.c. with respect to λ:

• Candidates to solution?

• Maxima and minima?



2 Envelope Theorem II

• Nicholson, Ch. 2, pp. 46-47.

• Envelope Theorem for Constrained Maximiza-
tion. In problem above consider F (p) ≡ f(x∗(p);p).
We are interested in dF (p)/dp. We can neglect in-
direct effects:

dF

dpi
=

∂f(x∗(p);p)
∂pi

−
mX
j=0

λj
∂hj(x

∗(p);p)
∂pi

• Example 4 (continued). maxx,y x2 − xy + y2 s.t.
x2 + y2 − p = 0

• df(x∗(p), y∗(p))/dp?

• Envelope Theorem.



3 Preferences

• Part 1 of our journey in microeoconomics: Consumer
Theory

• Choice of consumption bundle:

1. Consumption today or tomorrow

2. work, study, and leisure

3. choice of government policy

• Starting point: preferences.

1. 1 egg today Â 1 chicken tomorrow

2. 1 hour doing problem set Â 1 hour in class Â
... Â 1 hour out with friends

3. War on Iraq Â Sanctions on Iraq



4 Properties of Preferences

• Nicholson, Ch.3, p. 66.

• Commodity set X (apples vs. strawberries, work vs.
leisure, consume today vs. tomorrow)

• Preference relation º over X

• A preference relation º is rational if

1. It is complete: For all x and y inX, either x º y,

or y º x or both

2. It is transitive: For all x, y, and z, x º y and
y º z implies x º z

• Preference relation º is continuous if for all y in
X, the sets {x : x º y} and {x : y º x} are closed
sets.



• Example: X = R2 with map of indifference curves

• Counterexamples:

1. Incomplete preferences. Dominance rule.

2. Intransitive preferences. Quasi-discernible differ-
ences.

3. Discontinuous preferences. Lexicographic order



• Indifference relation ∼: x ∼ y if x º y and y º x

• Strict preference: x Â y if x º y and not y º x

• Exercise. If º is rational,

— Â is transitive

— ∼ is transitive

— Reflexive property of º. For all x, x º x.



• Other features of preferences

• Preference relation º is:

— monotonic if x ≥ y implies x º y.

— strictly monotonic if x ≥ y and xj > yj for
some j implies x Â y.

— convex if for all x, y, and z inX such that x º z

and y º z, then tx + (1 − t)y º z for all t in
[0, 1]



5 From preferences to utility

• Nicholson, Ch. 3

• Economists like to use utility functions u : X → R

• u(x) is ‘liking’ of good x

• u(a) > u(b) means: I prefer a to b.

• Def. Utility function u represents preferences º if,
for all x and y in X, x º y if and only if u(x) ≥
u(y).

• Theorem. If preference relation º is rational and
continuous, there exists a continuous utility function
u : X → R that represents it.



• [Skip proof]

• Example:

(x1, x2) º (y1, y2) iff x1 + x2 ≥ y1 + y2

• Draw:

• Utility function that represents it: u (x) = x1 + x2

• But... Utility function representing º is not unique

• Take exp(u(x))

• u(a) > u(b)⇐⇒ exp(u(a)) > exp(u(b))



• If u(x) represents preferences º and f is a strictly
increasing function, then f(u(x)) represents º as
well.

• If preferences are represented from a utility function,
are they rational?

— completeness

— transitivity



• Indifference curves: u(x1, x2) = ū

• They are just implicit functions! u(x1, x2)− ū = 0

dx2
dx1

= −
U 0x1
U 0x2

=MRS

• Indifference curves for:

— monotonic preferences;

— strictly monotonic preferences;

— convex preferences



6 Next Class

• Commoun Utility Functions

• Utility Maximization


