Economics 101A (Lecture 1)

Adriana Espinosa Vikram Pathania (for Stefano DellaVigna)

August 30, 2005

Outline

1. Prerequisites for the course

2. A test in maths

3. Optimization with 1 variable

4. Multivariate optimization

1 Prerequisites

- Mathematics
- Good knowledge of multivariate calculus - Maths 1 A or 1 B
- Basic knowledge of probability theory and matrix algebra
- Economics
- Knowledge of fundamentals - Ec1 or 2 or 3
- High interest!

2 A Test in Maths

1. Can you differentiate the following functions with respect to x ?
(a) $y=\exp (x)$
(b) $y=a+b x+c x^{2}$
(c) $y=\frac{\exp (x)}{b^{x}}$
2. Can you partially differentiate these functions with respect to x and w ?
(a) $y=a x w+b x-c \frac{x}{w}+d \sqrt{x w}$
(b) $y=\exp (x / w)$
(c) $y=\int_{0}^{1}\left(x+a w^{2}+x s\right) d s$
3. Can you plot the following functions of one variable?
(a) $y=\exp (x)$
(b) $y=-x^{2}$
(c) $y=\exp \left(-x^{2}\right)$
4. Are the following functions concave, convex or neither?
(a) $y=x^{3}$
(b) $y=-\exp (x)$
(c) $y=x^{5} y^{5}$ for $x>0, y>0$
5. Consider an urn with 20 red and 40 black balls?
(a) What is the probability of drawing a red ball?
(b) What is the probability of drawing a black ball?
6. What is the determinant of the following matrices?
(a) $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
(b) $A=\left[\begin{array}{ll}10 & 10 \\ 10 & 10\end{array}\right]$

3 Optimization with 1 variable

- Nicholson, Ch.2, pp. 22-26
- Example. Function $y=-x^{2}$
- What is the maximum?
- Maximum is at 0
- General method?
- Sure! Use derivatives
- Derivative is slope of the function at a point:

$$
\frac{\partial f(x)}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- Necessary condition for maximum x^{*} is

$$
\begin{equation*}
\frac{\partial f\left(x^{*}\right)}{\partial x}=0 \tag{1}
\end{equation*}
$$

- Try with $y=-x^{2}$.
- $\frac{\partial f(x)}{\partial x}=$

$$
=0 \Longrightarrow x^{*}=
$$

- Does this guarantee a maximum? No!
- Consider the function $y=x^{3}$
- $\frac{\partial f(x)}{\partial x}=$

$$
=0 \Longrightarrow x^{*}=
$$

- Plot $y=x^{3}$.
- Sufficient condition for a (local) maximum:

$$
\begin{equation*}
\frac{\partial f\left(x^{*}\right)}{\partial x}=0 \text { and }\left.\frac{\partial^{2} f(x)}{\partial^{2} x}\right|_{x^{*}}<0 \tag{2}
\end{equation*}
$$

- At a maximum, $f\left(x^{*}+h\right)-f\left(x^{*}\right)<0$ for all h.
- Taylor Rule: $f\left(x^{*}+h\right)-f\left(x^{*}\right)=\frac{\partial f\left(x^{*}\right)}{\partial x} h+\frac{1}{2} \frac{\partial^{2} f\left(x^{*}\right)}{\partial^{2} x} h^{2}+$ higher order terms.
- Notice: $\frac{\partial f\left(x^{*}\right)}{\partial x}=0$.

$$
\begin{aligned}
& \text { - } f\left(x^{*}+h\right)-f\left(x^{*}\right)<0 \text { for all } h \Longrightarrow \frac{\partial^{2} f\left(x^{*}\right)}{\partial^{2} x} h^{2}< \\
& 0 \Longrightarrow \frac{\partial^{2} f\left(x^{*}\right)}{\partial^{2} x}<0
\end{aligned}
$$

- Careful: Maximum may not exist: $y=\exp (x)$
- Tricky examples:
- Minimum. $y=x^{2}$
- No maximum. $y=\exp (x)$ for $x \in(-\infty,+\infty)$
- Corner solution. $y=x$ for $x \in[0,1]$

4 Multivariate optimization

- Nicholson, Ch.2, pp. 26-32
- Function from R^{n} to $R: y=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Partial derivative with respect to x_{i} :

$$
\begin{aligned}
& \frac{\partial f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{i}} \\
= & \lim _{h \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i}+h, \ldots x_{n}\right)-f\left(x_{\left.1, \ldots, x_{i}, \ldots x_{n}\right)}^{h}\right.}{h}
\end{aligned}
$$

- Slope along dimension i
- Total differential:

$$
d f=\frac{\partial f(x)}{\partial x_{1}} d x_{1}+\frac{\partial f(x)}{\partial x_{2}} d x_{2}+\ldots+\frac{\partial f(x)}{\partial x_{n}} d x_{n}
$$

- One important economic example
- Example 1: Partial derivatives of $y=f(L, K)=$ $L^{5} K^{.5}$
- $f_{L}^{\prime}=$
(marginal productivity of labor)
- $f_{K}^{\prime}=$
(marginal productivity of capital)
- $f_{L, K}^{\prime \prime}=$

Maximization over an open set (like R)

- Necessary condition for maximum x^{*} is

$$
\begin{equation*}
\frac{\partial f\left(x^{*}\right)}{\partial x_{i}}=0 \forall i \tag{3}
\end{equation*}
$$

or in vectorial form

$$
\nabla f(x)=0
$$

- These are commonly referred to as first order conditions (f.o.c.)
- Sufficient conditions? Define Hessian matrix H :

$$
H=\left(\begin{array}{cccc}
f_{x_{1}, x_{1}}^{\prime \prime} & f_{x_{1}, x_{2}}^{\prime \prime} & \cdots & f_{x_{1}, x_{n}}^{\prime \prime} \\
\ldots & \ldots & \cdots & \ldots \\
f_{x_{n}, x_{1}}^{\prime \prime} & f_{x_{n}, x_{2}}^{\prime \prime} & \cdots & f_{x_{n}, x_{n}}^{\prime \prime}
\end{array}\right)
$$

- Subdeterminant $|H|_{i}$ of Matrix H is defined as the determinant of submatrix formed by first i rows and first i columns of matrix H.
- Examples.
- $|H|_{1}$ is determinant of $f_{x_{1}, x_{1}}^{\prime \prime}$, that is, $f_{x_{1}, x_{1}}^{\prime \prime}$
- $|H|_{2}$ is determinant of

$$
H=\left(\begin{array}{cc}
f_{x_{1}, x_{1}}^{\prime \prime} & f_{x_{1}, x_{2}}^{\prime \prime} \\
f_{x_{2}, x_{1}}^{\prime \prime} & f_{x_{2}, x_{2}}^{\prime \prime}
\end{array}\right)
$$

- Sufficient condition for maximum x^{*}.

1. x^{*} must satisy first order conditions;
2. Subdeterminants of matrix H must have alternating signs, with subdeterminant of H_{1} negative.

- Case with $n=2$
- Condition 2 reduces to $f_{x_{1}, x_{1}}^{\prime \prime}<0$ and $f_{x_{1}, x_{1}}^{\prime \prime} f_{x_{2}, x_{2}}^{\prime \prime}-$ $\left(f_{x_{1}, x_{2}}^{\prime \prime}\right)^{2}>0$.
- Example 2: $h\left(x_{1}, x_{2}\right)=p_{1} * x_{1}^{2}+p_{2} * x_{2}^{2}-2 x_{1}-5 x_{2}$
- First order condition $w /$ respect to x_{1} ?
- First order condition $w /$ respect to x_{2} ?
- $x_{1}^{*}, x_{2}^{*}=$
- For which p_{1}, p_{2} is it a maximum?
- For which p_{1}, p_{2} is it a minimum?

5 Next Class

- Comparative Statics
- Implicit Function Theorem
- Envelope Theorem
- An Example of Important Economics: The Economics of Discrimination
- Going toward:
- Preferences
- Utility Maximization (where we get to apply maximization techniques for the first time)

