Economics 101A (Lecture 1)

Adriana Espinosa Vikram Pathania (for Stefano DellaVigna)

August 30, 2005

Outline

- 1. Prerequisites for the course
- 2. A test in maths
- 3. Optimization with 1 variable
- 4. Multivariate optimization

1 Prerequisites

- Mathematics
 - Good knowledge of multivariate calculus Maths
 1A or 1B
 - Basic knowledge of probability theory and matrix algebra

- Economics
 - Knowledge of fundamentals Ec1 or 2 or 3
 - High interest!

2 A Test in Maths

- 1. Can you differentiate the following functions with respect to x?
 - (a) $y = \exp(x)$

(b)
$$y = a + bx + cx^2$$

(c)
$$y = \frac{\exp(x)}{b^x}$$

- 2. Can you partially differentiate these functions with respect to x and w?
 - (a) $y = axw + bx c\frac{x}{w} + d\sqrt{xw}$
 - (b) $y = \exp(x/w)$
 - (c) $y = \int_0^1 (x + aw^2 + xs) ds$

3. Can you plot the following functions of one variable?

(a)
$$y = \exp(x)$$

(b)
$$y = -x^2$$

(c)
$$y = \exp(-x^2)$$

4. Are the following functions concave, convex or neither?

(a)
$$y = x^3$$

(b)
$$y = -\exp(x)$$

(c) $y = x^{.5}y^{.5}$ for x > 0, y > 0

- 5. Consider an urn with 20 red and 40 black balls?
 - (a) What is the probability of drawing a red ball?
 - (b) What is the probability of drawing a black ball?

6. What is the determinant of the following matrices?

(a)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 10 & 10 \\ 10 & 10 \end{bmatrix}$

3 Optimization with 1 variable

- Nicholson, Ch.2, pp. 22-26
- Example. Function $y = -x^2$
- What is the maximum?

- Maximum is at 0
- General method?

- Sure! Use derivatives
- Derivative is slope of the function at a point:

$$\frac{\partial f(x)}{\partial x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

• Necessary condition for maximum x^* is

$$\frac{\partial f(x^*)}{\partial x} = 0 \tag{1}$$

• Try with $y = -x^2$.

•
$$\frac{\partial f(x)}{\partial x} = 0 \Longrightarrow x^* =$$

- Does this guarantee a maximum? No!
- Consider the function $y = x^3$

•
$$\frac{\partial f(x)}{\partial x} = 0 \Longrightarrow x^* =$$

• Plot
$$y = x^3$$
.

• Sufficient condition for a (local) maximum:

$$\frac{\partial f(x^*)}{\partial x} = 0 \text{ and } \left. \frac{\partial^2 f(x)}{\partial^2 x} \right|_{x^*} < 0 \qquad (2)$$

- At a maximum, $f(x^* + h) f(x^*) < 0$ for all h.
- Taylor Rule: $f(x^*+h) f(x^*) = \frac{\partial f(x^*)}{\partial x}h + \frac{1}{2}\frac{\partial^2 f(x^*)}{\partial^2 x}h^2 + higher order terms.$

• Notice:
$$\frac{\partial f(x^*)}{\partial x} = 0.$$

•
$$f(x^* + h) - f(x^*) < 0$$
 for all $h \Longrightarrow \frac{\partial^2 f(x^*)}{\partial^2 x} h^2 < 0$
 $0 \Longrightarrow \frac{\partial^2 f(x^*)}{\partial^2 x} < 0$

• Careful: Maximum may not exist: $y = \exp(x)$

• Tricky examples:

– Minimum.
$$y = x^2$$

- No maximum.
$$y = \exp(x)$$
 for $x \in (-\infty, +\infty)$

- Corner solution.
$$y = x$$
 for $x \in [0, 1]$

4 Multivariate optimization

- Nicholson, Ch.2, pp. 26-32
- Function from R^n to R: $y = f(x_1, x_2, ..., x_n)$
- Partial derivative with respect to x_i :

$$= \lim_{h \to 0} \frac{\frac{\partial f(x_1, \dots, x_n)}{\partial x_i}}{h}$$

- Slope along dimension i
- Total differential:

$$df = \frac{\partial f(x)}{\partial x_1} dx_1 + \frac{\partial f(x)}{\partial x_2} dx_2 + \dots + \frac{\partial f(x)}{\partial x_n} dx_n$$

• One important economic example

- Example 1: Partial derivatives of $y = f(L, K) = L^{.5}K^{.5}$
- $f'_L =$ (marginal productivity of labor)
- $f'_K =$ (marginal productivity of capital)

•
$$f_{L,K}'' =$$

Maximization over an open set (like R)

• Necessary condition for maximum x^* is

$$\frac{\partial f(x^*)}{\partial x_i} = \mathbf{0} \ \forall i \tag{3}$$

or in vectorial form

$$\nabla f(x) = 0$$

• These are commonly referred to as first order conditions (f.o.c.)

• Sufficient conditions? Define Hessian matrix *H*:

$$H = \begin{pmatrix} f_{x_1,x_1}'' & f_{x_1,x_2}'' & \dots & f_{x_1,x_n}'' \\ \dots & \dots & \dots & \dots \\ f_{x_n,x_1}'' & f_{x_n,x_2}'' & \dots & f_{x_n,x_n}'' \end{pmatrix}$$

- Subdeterminant |H|_i of Matrix H is defined as the determinant of submatrix formed by first i rows and first i columns of matrix H.
- Examples.

- $|H|_1$ is determinant of f''_{x_1,x_1} , that is, f''_{x_1,x_1} - $|H|_2$ is determinant of $H = \begin{pmatrix} f''_{x_1,x_1} & f''_{x_1,x_2} \\ f''_{x_2,x_1} & f''_{x_2,x_2} \end{pmatrix}$

- Sufficient condition for maximum x^* .
 - 1. x^* must satisy first order conditions;
 - 2. Subdeterminants of matrix H must have alternating signs, with subdeterminant of H_1 negative.

- Case with n = 2
- Condition 2 reduces to $f_{x_1,x_1}'' < 0$ and $f_{x_1,x_1}'' f_{x_2,x_2}' (f_{x_1,x_2}'')^2 > 0$.

- Example 2: $h(x_1, x_2) = p_1 * x_1^2 + p_2 * x_2^2 2x_1 5x_2$
- First order condition w/ respect to x_1 ?
- First order condition w/ respect to x_2 ?
- $x_1^*, x_2^* =$
- For which p_1, p_2 is it a maximum?
- For which p_1, p_2 is it a minimum?

5 Next Class

- Comparative Statics
- Implicit Function Theorem
- Envelope Theorem
- An Example of Important Economics: The Economics of Discrimination

- Going toward:
 - Preferences
 - Utility Maximization (where we get to apply maximization techniques for the first time)