Economics 101A (Lecture 2)

Stefano DellaVigna

September 1, 2005

Outline

1. Who Am I?

2. Questions on Syllabus
3. An Example: Economics of Discrimination
4. Comparative Statics
5. Implicit function theorem
6. Envelope Theorem

1 Who am I?

Stefano DellaVigna

- Assistant Professor, Department of Economics
- Bocconi (Italy) undergraduate (Econ.), Harvard PhD (Econ.)
- Psychology and economics, applied microeconomics, behavioral finance, aging, media
- Evans 515
- OH: We 2-4

2 Questions on Syllabus?

- For questions on enrollment, note:
- In the past, everyone internding to take the class managed to
- I expect (and hope) that this will happen also this year
- However: No certainty of this
- Have to wait till end of second week
- For further questions, see Desiree Schaan. OH: 508-2, 10-12, 1-3 every day till September 7th

3 An Example: Economics of discrimination

- Ok, I need maths. But where is the economics?
- Workers:
- A and B. They produce 1 widget per hour
- Both have reservation wage \bar{u}
- Firm:
- sells widgets at price $p>\bar{u}$ (assume p given)
- dislikes worker B
- Maximizes profits ($p *$ no of widgets - cost of labor) minus disutility d if employs B
- Wages and employment in this industry?
- Employment
- Net surplus from employing $A: p-\bar{u}$
- Net surplus from employing $B: p-\bar{u}-d$
- If $\bar{u}<p<\bar{u}+d$, Firm employs A but not B
- If $\bar{u}+d<p$, Firm employs both
- What about wages?
- Case I. Firm monopolist and no worker union
- Firm maximizes profits and gets all the net surplus
- Wages of A and B equal \bar{u}
- Case II. Firm monopolist and worker union
- Firm and worker get half of the net surplus each
- Wage of A equals $\bar{u}+.5 *(p-\bar{u})$
- Wage of B equals $\bar{u}+.5 *(p-\bar{u}-d)$
- Case III. Perfect competition among firms that discriminate $(d>0)$
- Prices are lowered to the cost of production
- Wage of A equals p
- B is not employed
- The magic of competition
- Case IIIb. Perfect competition + At least one firm does not discriminate $(d=0)$
- This firm offers wage p to both workers
- What happens to worker B ?
- She goes to the firm with $d=0$!
- In equilibrium now:
* Wage of A equals p
* Wage of B equals p as well!
- Is this true? Any evidence?
- S. Black and P. Strahan, AER 2001.
- Local monopolies in banking industry until mid 70s
- Mid 70s: deregulation
- From local monopolies to perfect competition.
- Wages?
* Wages fall by 6.1 percent
- Discrimination?
* Wages fall by 12.5 percent for men
* Wages fall by 2.9 percent for women
* Employment of women as managers increases by 10 percent
- More evidence on discrimination
- Does black-white and male-female wage back derive from discrimination?
- Field experiment (Betrand and Mullainathan, 2005)
- Send real CV with randomly picked names:
- Male/Female
- White/African American
- Measure call-back rate from interview
- Results (Table 1, Handout):
- Call-back rates 50 percent higher for Whites!
- No effect for Male-Female call back rates
- Strong evidence of discrimination against African Americans
- Example of Applied Microeconomics
- Not (really) covered in this class: See Ec142 and (partly) Ec152
- If curious: read Steven Levitt and Stephen Dubner, Freakonomics.

4 Comparative statics

- Economics is all about 'comparative statics'
- What happens to optimal economic choices if we change one parameter?
- Example: Car production. Consumer:

1. Car purchase and increase in oil price
2. Car purchase and increase in income

- Producer:

1. Car production and minimum wage increase
2. Car production and decrease in tariff on Japanese cars

- Next two sections

5 Implicit function theorem

- Implicit function: Ch. 2, pp. 32-33 [OLD, 32-34]
- Consider function $y=g(x, p)$
- Can rewrite as $y-g(x, p)=0$
- Implicit function has form: $h(y, x, p)=0$
- Often we need to go from implicit to explicit function
- Example 3: $1-x y-e^{y}=0$.
- Write x as function of y :
- Write y as function of x :
- Univariate implicit function theorem (Dini): Consider an equation $f(p, x)=0$, and a point $\left(p_{0}, x_{0}\right)$ solution of the equation. Assume:

1. f continuous and differentiable in a neighbourhood of $\left(p_{0}, x_{0}\right)$;
2. $f_{x}^{\prime}\left(p_{0}, x_{0}\right) \neq 0$.

- Then:

1. There is one and only function $x=g(p)$ defined in a neighbourhood of p_{0} that satisfies $f(p, g(p))=$ 0 and $g\left(p_{0}\right)=x_{0}$;
2. The derivative of $g(p)$ is

$$
g^{\prime}(p)=-\frac{f_{p}^{\prime}(p, g(p))}{f_{x}^{\prime}(p, g(p))}
$$

- Example 3 (continued): $1-x y-e^{y}=0$
- Find derivative of $y=g(x)$ implicitely defined for $(x, y)=(1,0)$
- Assumptions:

1. Satisfied?
2. Satisfied?

- Compute derivative
- Multivariate implicit function theorem (Dini): Consider a set of equations $\left(f_{1}\left(p_{1}, \ldots, p_{n} ; x_{1}, \ldots, x_{s}\right)=\right.$ $\left.0 ; \ldots ; f_{s}\left(p_{1}, \ldots, p_{n} ; x_{1}, \ldots, x_{s}\right)=0\right)$, and a point (p_{0}, x_{0}) solution of the equation. Assume:

1. f_{1}, \ldots, f_{s} continuous and differentiable in a neighbourhood of (p_{0}, x_{0});
2. The following Jakobian matrix $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$ evaluated at (p_{0}, x_{0}) has determinant different from 0 :

$$
\frac{\partial \mathbf{f}}{\partial \mathbf{x}}=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & & \frac{\partial f_{1}}{\partial x_{s}} \\
\dddot{\partial} & \cdots & \dddot{f_{s}} \\
\frac{\partial f_{s}}{\partial x_{1}} & \cdots & \frac{\partial \tilde{f}_{s}}{\partial x_{s}}
\end{array}\right)
$$

- Then:

1. There is one and only set of functions $x=\mathbf{g}(p)$ defined in a neighbourhood of p_{0} that satisfy $\mathbf{f}(p, \mathbf{g}(p))=\mathbf{0}$ and $\mathbf{g}\left(p_{0}\right)=x_{0} ;$
2. The partial derivative of x_{i} with respect to p_{k} is

$$
\frac{\partial g_{i}}{\partial p_{k}}=-\frac{\operatorname{det}\left(\frac{\partial\left(f_{1}, \ldots, f_{s}\right)}{\partial\left(x_{1}, \ldots x_{i-1}, p_{k}, x_{i+1} \cdots, x_{s}\right)}\right)}{\operatorname{det}\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)}
$$

- Example 2 (continued): $\operatorname{Max} h\left(x_{1}, x_{2}\right)=p_{1} * x_{1}^{2}+$ $p_{2} * x_{2}^{2}-2 x_{1}-5 x_{2}$
- f.o.c. $x_{1}: 2 p_{1} * x_{1}-2=0=f_{1}(p, x)$
- f.o.c. $x_{2}: 2 p_{2} * x_{2}-5=0=f_{2}(p, x)$
- Comparative statics of x_{1}^{*} with respect to p_{1} ?
- First compute $\operatorname{det}\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)$

$$
\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right)=(
$$

- Then compute $\operatorname{det}\left(\frac{\partial\left(f_{1}, \ldots, f_{s}\right)}{\partial\left(x_{1}, \ldots x_{i-1}, p_{k}, x_{i+1} \ldots, x_{s}\right)}\right)$

$$
\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial p_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial p_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right)=(
$$

- Finally, $\frac{\partial x_{1}}{\partial p_{1}}=$
- Why did you compute $\operatorname{det}\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)$ already?

6 Envelope Theorem

- Ch. 2, pp. 33-37 [OLD, 34-39]
- You now know how x_{1}^{*} varies if p_{1} varies.
- How does $h\left(\mathbf{x}^{*}(\mathbf{p})\right)$ vary as p_{1} varies?
- Differentiate $h\left(x_{1}^{*}\left(p_{1}, p_{2}\right), x_{2}^{*}\left(p_{1}, p_{2}\right), p_{1}, p_{2}\right)$ with respect to p_{1} :

$$
\begin{aligned}
& \frac{d h\left(x_{1}^{*}\left(p_{1}, p_{2}\right), x_{2}^{*}\left(p_{1}, p_{2}\right), p_{1}, p_{2}\right)}{d p_{1}} \\
= & \frac{\partial h\left(\mathbf{x}^{*}, \mathbf{p}\right)}{\partial x_{1}} * \frac{\partial x_{1}^{*}\left(\mathbf{x}^{*}, \mathbf{p}\right)}{\partial p_{1}} \\
& +\frac{\partial h\left(\mathbf{x}^{*}, \mathbf{p}\right)}{\partial x_{2}} * \frac{\partial x_{2}^{*}\left(\mathbf{x}^{*}, \mathbf{p}\right)}{\partial p_{1}} \\
& +\frac{\partial h\left(\mathbf{x}^{*}, \mathbf{p}\right)}{\partial p_{1}}
\end{aligned}
$$

- Notice: First two terms are zero.
- Envelope Theorem for unconstrained maximization. Assume that you maximize function $f(\mathbf{x} ; \mathbf{p})$ with respect to x. Consider then the function f at the optimum, that is, $f\left(\mathbf{x}^{*}(\mathbf{p}), \mathbf{p}\right)$. The total differential of this function with respect to p_{i} equals the partial derivative with respect to p_{i} :

$$
\frac{d f\left(\mathbf{x}^{*}(\mathbf{p}), \mathbf{p}\right)}{d p_{i}}=\frac{\partial f\left(\mathbf{x}^{*}(\mathbf{p}), \mathbf{p}\right)}{\partial p_{i}}
$$

- You can disregard the indirect effects. Graphical intuition.

7 Next Class

- Next class:
- Convexity and Concavity
- Constrained Maximization
- Envelope Theorem II
- Going toward:
- Preferences
- Utility Maximization (where we get to apply maximization techniques the first time)

