Economics 101A (Lecture 2)

Stefano DellaVigna

September 1, 2005

Outline

- 1. Who Am I?
- 2. Questions on Syllabus
- 3. An Example: Economics of Discrimination
- 4. Comparative Statics
- 5. Implicit function theorem
- 6. Envelope Theorem

1 Who am I?

Stefano DellaVigna

- Assistant Professor, Department of Economics
- Bocconi (Italy) undergraduate (Econ.), Harvard PhD (Econ.)
- Psychology and economics, applied microeconomics, behavioral finance, aging, media
- Evans 515
- OH: We 2-4

2 Questions on Syllabus?

- For questions on enrollment, note:
 - In the past, everyone internding to take the class managed to
 - I expect (and hope) that this will happen also this year
 - However: No certainty of this
 - Have to wait till end of second week
 - For further questions, see Desiree Schaan. OH: 508-2, 10-12, 1-3 every day till September 7th

3 An Example: Economics of discrimination

- Ok, I need maths. But where is the economics?
- Workers:
 - -A and B. They produce 1 widget per hour
 - Both have reservation wage $ar{u}$
- Firm:
 - sells widgets at price $p > \overline{u}$ (assume p given)
 - dislikes worker B
 - Maximizes profits (p* no of widgets cost of labor) minus disutility d if employs B

- Wages and employment in this industry?
- Employment
 - Net surplus from employing $A:\ p-\bar{u}$
 - Net surplus from employing $B{:}~p-\bar{u}-d$
 - If $\bar{u} , Firm employs <math>A$ but not B
 - If $\bar{u} + d < p$, Firm employs both

• What about wages?

- Case I. Firm monopolist and no worker union
 - Firm maximizes profits and gets all the net surplus
 - Wages of A and B equal \bar{u}
- Case II. Firm monopolist and worker union
 - Firm and worker get half of the net surplus each

- Wage of A equals
$$\overline{u} + .5 * (p - \overline{u})$$

- Wage of B equals $\bar{u} + .5 * (p \bar{u} d)$
- Case III. Perfect competition among firms that discriminate (d > 0)
 - Prices are lowered to the cost of production
 - Wage of A equals p
 - -B is not employed

- The magic of competition
- Case IIIb. Perfect competition + At least one firm does not discriminate (d = 0)
 - This firm offers wage p to both workers
 - What happens to worker B?
 - She goes to the firm with d = 0!
 - In equilibrium now:
 - \ast Wage of A equals p
 - * Wage of B equals p as well!

- Is this true? Any evidence?
- S. Black and P. Strahan, AER 2001.
 - Local monopolies in banking industry until mid
 70s
 - Mid 70s: deregulation
 - From local monopolies to perfect competition.
 - Wages?
 - * Wages fall by 6.1 percent
 - Discrimination?
 - * Wages fall by 12.5 percent for men
 - * Wages fall by 2.9 percent for women
 - Employment of women as managers increases by 10 percent

- More evidence on discrimination
- Does black-white and male-female wage back derive from discrimination?
- Field experiment (Betrand and Mullainathan, 2005)
- Send real CV with randomly picked names:
 - Male/Female
 - White/African American
- Measure call-back rate from interview
- Results (Table 1, Handout):
 - Call-back rates 50 percent higher for Whites!
 - No effect for Male-Female call back rates

- Strong evidence of discrimination against African Americans
- Example of Applied Microeconomics
- Not (really) covered in this class: See Ec142 and (partly) Ec152
- If curious: read Steven Levitt and Stephen Dubner, *Freakonomics.*

4 Comparative statics

- Economics is all about 'comparative statics'
- What happens to optimal economic choices if we change one parameter?
- Example: Car production. Consumer:
 - 1. Car purchase and increase in oil price
 - 2. Car purchase and increase in income
- Producer:
 - 1. Car production and minimum wage increase
 - 2. Car production and decrease in tariff on Japanese cars
- Next two sections

5 Implicit function theorem

- Implicit function: Ch. 2, pp. 32-33 [OLD, 32-34]
- Consider function y = g(x, p)
- Can rewrite as y g(x, p) = 0
- Implicit function has form: h(y, x, p) = 0
- Often we need to go from implicit to explicit function

- Example 3: $1 xy e^y = 0$.
- Write x as function of y :
- Write y as function of x :

- Univariate implicit function theorem (Dini): Consider an equation f(p, x) = 0, and a point (p₀, x₀) solution of the equation. Assume:
 - 1. f continuous and differentiable in a neighbourhood of (p_0, x_0) ;
 - 2. $f'_x(p_0, x_0) \neq 0$.
- Then:
 - There is one and only function x = g(p) defined in a neighbourhood of p₀ that satisfies f(p, g(p)) = 0 and g(p₀) = x₀;
 - 2. The derivative of g(p) is

$$g'(p) = -\frac{f'_p(p, g(p))}{f'_x(p, g(p))}$$

- Example 3 (continued): $1 xy e^y = 0$
- Find derivative of y = g(x) implicitly defined for (x, y) = (1, 0)
- Assumptions:
 - 1. Satisfied?
 - 2. Satisfied?
- Compute derivative

- Multivariate implicit function theorem (Dini): Consider a set of equations (f₁(p₁,..., p_n; x₁,..., x_s) = 0; ...; f_s(p₁,..., p_n; x₁,..., x_s) = 0), and a point (p₀,x₀) solution of the equation. Assume:
 - 1. $f_1, ..., f_s$ continuous and differentiable in a neighbourhood of (p_0, x_0) ;
 - 2. The following Jakobian matrix $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$ evaluated at (p_0, x_0) has determinant different from 0:

$$\frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_s} \\ \dots & \dots & \dots \\ \frac{\partial f_s}{\partial x_1} & \dots & \frac{\partial f_s}{\partial xs} \end{pmatrix}$$

• Then:

- 1. There is one and only set of functions x = g(p)defined in a neighbourhood of p_0 that satisfy f(p, g(p)) = 0 and $g(p_0) = x_0$;
- 2. The partial derivative of x_i with respect to p_k is

$$\frac{\partial g_i}{\partial p_k} = -\frac{\det\left(\frac{\partial(f_1, \dots, f_s)}{\partial(x_1, \dots x_{i-1}, p_k, x_{i+1} \dots, x_s)}\right)}{\det\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)}$$

- Example 2 (continued): Max $h(x_1, x_2) = p_1 * x_1^2 + p_2 * x_2^2 2x_1 5x_2$
- f.o.c. $x_1 : 2p_1 * x_1 2 = 0 = f_1(p,x)$
- f.o.c. $x_2: 2p_2 * x_2 5 = 0 = f_2(p,x)$
- Comparative statics of x_1^* with respect to p_1 ?
- First compute det $\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)$

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{pmatrix} = \begin{pmatrix} & & \\ & & \end{pmatrix}$$

• Then compute det
$$\left(\frac{\partial(f_1,...,f_s)}{\partial(x_1,...x_{i-1},p_k,x_{i+1}...,x_s)}\right)$$

 $\left(\begin{array}{cc} \frac{\partial f_1}{\partial p_1} & \frac{\partial f_1}{\partial x_2}\\ \frac{\partial f_2}{\partial p_1} & \frac{\partial f_2}{\partial x_2} \end{array}\right) = \left(\begin{array}{cc} \end{array}\right)$

• Finally,
$$\frac{\partial x_1}{\partial p_1} =$$

• Why did you compute det $\left(\frac{\partial f}{\partial x}\right)$ already?

6 Envelope Theorem

- Ch. 2, pp. 33-37 [OLD, 34-39]
- You now know how x_1^* varies if p_1 varies.
- How does $h(\mathbf{x}^*(\mathbf{p}))$ vary as p_1 varies?
- Differentiate $h(x_1^*(p_1, p_2), x_2^*(p_1, p_2), p_1, p_2)$ with respect to p_1 :

$$=\frac{\frac{dh(\mathbf{x}_{1}^{*}(p_{1}, p_{2}), \mathbf{x}_{2}^{*}(p_{1}, p_{2}), p_{1}, p_{2})}{dp_{1}}}{\frac{dp_{1}}{\partial x_{1}}} + \frac{\frac{\partial h(\mathbf{x}^{*}, \mathbf{p})}{\partial x_{1}} * \frac{\frac{\partial x_{1}^{*}(\mathbf{x}^{*}, \mathbf{p})}{\partial p_{1}}}{\frac{\partial p_{1}}{\partial p_{1}}} + \frac{\frac{\partial h(\mathbf{x}^{*}, \mathbf{p})}{\partial p_{1}}}{\frac{\partial p_{1}}{\partial p_{1}}}$$

• Notice: First two terms are zero.

 Envelope Theorem for unconstrained maximization. Assume that you maximize function f(x; p) with respect to x. Consider then the function f at the optimum, that is, f(x*(p), p). The total differential of this function with respect to p_i equals the partial derivative with respect to p_i:

$$\frac{df(\mathbf{x}^*(\mathbf{p}),\mathbf{p})}{dp_i} = \frac{\partial f(\mathbf{x}^*(\mathbf{p}),\mathbf{p})}{\partial p_i}.$$

• You can disregard the indirect effects. Graphical intuition.

7 Next Class

- Next class:
 - Convexity and Concavity
 - Constrained Maximization
 - Envelope Theorem II

- Going toward:
 - Preferences
 - Utility Maximization (where we get to apply maximization techniques the first time)