Economics 101A (Lecture 4)

Stefano DellaVigna

September 8, 2005

Outline

- 1. Constrained Maximization
- 2. Envelope Theorem II
- 3. Preferences
- 4. Properties of Preferences
- 5. From Preferences to Utility

1 Constrained Maximization

- Ch. 2, pp. 38-44 [OLD, 39-46]
- So far unconstrained maximization on R (or open subsets)
- What if there are constraints to be satisfied?
- Example 1: $\max_{x,y} x * y$ subject to 3x + y = 5
- Substitute it in: $\max_{x,y} x * (5 3x)$
- Solution: $x^* =$
- Example 2: max_{x,y} xy subject to x exp(y)+y exp(x) =
 5
- Solution: ?

- Graphical intuition on general solution.
- Example 3: $\max_{x,y} f(x,y) = x * y$ s.t. $h(x,y) = x^2 + y^2 1 = 0$
- Draw $0 = h(x, y) = x^2 + y^2 1$.
- Draw x * y = K with K > 0. Vary K
- Where is optimum?

- Where dy/dx along curve xy = K equals dy/dx along curve $x^2 + y^2 1 = 0$
- Write down these slopes.

- Idea: Use implicit function theorem.
- Heuristic solution of system

$$\max_{x,y} f(x,y)$$

s.t. $h(x,y) = 0$

- Assume:
 - continuity and differentiability of h

- $h'_y \neq 0$ (or $h'_x \neq 0$)

 Implicit function Theorem: Express y as a function of x (or x as function of y)! • Write system as $\max_x f(x, g(x))$

• f.o.c.:
$$f'_x(x,g(x)) + f'_y(x,g(x)) * \frac{\partial g(x)}{\partial x} = 0$$

• What is
$$\frac{\partial g(x)}{\partial x}$$
?

• Substitute in and get: $f'_x(x,g(x)) + f'_y(x,g(x)) * (-h'_x/h'_y) = 0$ or

$$\frac{f'_x(x,g(x))}{f'_y(x,g(x))} = \frac{h'_x(x,g(x))}{h'_y(x,g(x))}$$

• Lagrange Multiplier Theorem, necessary condition. Consider a problem of the type

s.t.
$$\begin{aligned} \max_{x_1,...,x_n} f\left(x_1, x_2, ..., x_n; \mathbf{p}\right) \\ & \begin{cases} h_1\left(x_1, x_2, ..., x_n; \mathbf{p}\right) = \mathbf{0} \\ h_2\left(x_1, x_2, ..., x_n; \mathbf{p}\right) = \mathbf{0} \\ & \dots \\ h_m\left(x_1, x_2, ..., x_n; \mathbf{p}\right) = \mathbf{0} \end{aligned}$$

with n > m. Let $\mathbf{x}^* = \mathbf{x}^*(\mathbf{p})$ be a local solution to this problem.

- Assume:
 - f and h differentiable at \boldsymbol{x}^*
 - the following Jacobian matrix at \mathbf{x}^{*} has maximal rank

$$J = \begin{pmatrix} \frac{\partial h_1}{\partial x_1}(\mathbf{x}^*) & \dots & \frac{\partial h_1}{\partial x_n}(\mathbf{x}^*) \\ \dots & \dots & \dots \\ \frac{\partial h_m}{\partial x_1}(\mathbf{x}^*) & \dots & \frac{\partial h_m}{\partial x_n}(\mathbf{x}^*) \end{pmatrix}$$

• Then, there exists a vector $\lambda = (\lambda_1, ..., \lambda_m)$ such that (\mathbf{x}^*, λ) maximize the Lagrangean function

$$L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}; \mathbf{p}) - \sum_{j=0}^{m} \lambda_j h_j(\mathbf{x}; \mathbf{p})$$

• Case
$$n = 2, m = 1$$
.

• First order conditions are

$$\frac{\partial f(\mathbf{x}; \mathbf{p})}{\partial x_i} - \lambda \frac{\partial h(\mathbf{x}; \mathbf{p})}{\partial x_i} = \mathbf{0}$$

for i = 1, 2

• Rewrite as

$$\frac{f_{x_1}'}{f_{x_2}'} = \frac{h_{x_1}'}{h_{x_2}'}$$

- Constrained Maximization, Sufficient condition for the case n = 2, m = 1.
- If \mathbf{x}^* satisfies the Lagrangean condition, and the determinant of the bordered Hessian

$$H = \begin{pmatrix} 0 & -\frac{\partial h}{\partial x_1}(\mathbf{x}^*) & -\frac{\partial h}{\partial x_2}(\mathbf{x}^*) \\ -\frac{\partial h}{\partial x_1}(\mathbf{x}^*) & \frac{\partial^2 L}{\partial^2 x_1}(\mathbf{x}^*) & \frac{\partial^2 L}{\partial x_2 \partial x_1}(\mathbf{x}^*) \\ -\frac{\partial h}{\partial x_2}(\mathbf{x}^*) & \frac{\partial^2 L}{\partial x_1 \partial x_2}(\mathbf{x}^*) & \frac{\partial^2 L}{\partial x_2 \partial x_2}(\mathbf{x}^*) \end{pmatrix}$$

is positive, then \mathbf{x}^{*} is a constrained maximum.

- If it is negative, then \mathbf{x}^* is a constrained minimum.
- Why? This is just the Hessian of the Lagrangean L with respect to λ, x₁, and x₂

• Example 4: $\max_{x,y} x^2 - xy + y^2$ s.t. $x^2 + y^2 - p = 0$

•
$$\max_{x,y,\lambda} x^2 - xy + y^2 - \lambda(x^2 + y^2 - p)$$

- F.o.c. with respect to *y*:
- F.o.c. with respect to λ :
- Candidates to solution?
- Maxima and minima?

2 Envelope Theorem II

- Envelope Theorem II: Ch. 2, pp. 44 [OLD, 46-47]
- Envelope Theorem for Constrained Maximization. In problem above consider F(p) ≡ f(x*(p); p). We are interested in dF(p)/dp. We can neglect indirect effects:

$$\frac{dF}{dp_i} = \frac{\partial f(\mathbf{x}^*(\mathbf{p}); \mathbf{p})}{\partial p_i} - \sum_{j=0}^m \lambda_j \frac{\partial h_j(\mathbf{x}^*(\mathbf{p}); \mathbf{p})}{\partial p_i}$$

- Example 4 (continued). $\max_{x,y} x^2 xy + y^2$ s.t. $x^2 + y^2 p = 0$
- $df(x^*(p), y^*(p))/dp?$
- Envelope Theorem.

3 Preferences

- Part 1 of our journey in microeconomics: *Consumer Theory*
- Choice of consumption bundle:
 - 1. Consumption today or tomorrow
 - 2. work, study, and leisure
 - 3. choice of government policy
- Starting point: preferences.
 - 1. 1 egg today \succ 1 chicken tomorrow
 - 2. 1 hour doing problem set \succ 1 hour in class \succ ... \succ 1 hour out with friends
 - 3. War on Iraq \succ Sanctions on Iraq

4 Properties of Preferences

- Nicholson, Ch. 3, pp. 69-70 [OLD: 66]
- Commodity set X (apples vs. strawberries, work vs. leisure, consume today vs. tomorrow)
- Preference relation \succeq over X
- A preference relation \succeq is *rational* if
 - 1. It is *complete*: For all x and y in X, either $x \succeq y$, or $y \succeq x$ or both
 - 2. It is *transitive*: For all x, y, and $z, x \succeq y$ and $y \succeq z$ implies $x \succeq z$
- Preference relation ≽ is continuous if for all y in X, the sets {x : x ≽ y} and {x : y ≽ x} are closed sets.

• Example: $X = R^2$ with map of indifference curves

- Counterexamples:
 - 1. Incomplete preferences. Dominance rule.

2. Intransitive preferences. Quasi-discernible differences.

3. Discontinuous preferences. Lexicographic order

- Indifference relation $\sim: x \sim y \text{ if } x \succeq y \text{ and } y \succeq x$
- Strict preference: $x \succ y$ if $x \succeq y$ and not $y \succeq x$
- Exercise. If \succeq is rational,
 - \succ is transitive
 - \sim is transitive
 - Reflexive property of \succeq . For all $x, x \succeq x$.

- Other features of preferences
- Preference relation \succeq is:

- monotonic if $x \ge y$ implies $x \succeq y$.

- strictly monotonic if $x \ge y$ and $x_j > y_j$ for some j implies $x \succ y$.

convex if for all x, y, and z in X such that x ≥ z
and y ≥ z, then tx + (1 - t)y ≥ z for all t in
[0, 1]

5 From preferences to utility

- Nicholson, Ch. 3
- Economists like to use utility functions $u: X \to R$
- u(x) is 'liking' of good x
- u(a) > u(b) means: I prefer a to b.
- Def. Utility function u represents preferences ≽ if, for all x and y in X, x ≽ y if and only if u(x) ≥ u(y).
- Theorem. If preference relation ≽ is rational and continuous, there exists a continuous utility function u : X → R that represents it.

- [Skip proof]
- Example:

 $(x_1, x_2) \succeq (y_1, y_2)$ iff $x_1 + x_2 \ge y_1 + y_2$

• Draw:

- Utility function that represents it: $u(x) = x_1 + x_2$
- But... Utility function representing \succeq is not unique
- Take $\exp(u(x))$
- $u(a) > u(b) \iff \exp(u(a)) > \exp(u(b))$

If u(x) represents preferences ≽ and f is a strictly increasing function, then f(u(x)) represents ≿ as well.

- If preferences are represented from a utility function, are they rational?
 - completeness
 - transitivity

- Indifference curves: $u(x_1, x_2) = \overline{u}$
- They are just implicit functions! $u(x_1, x_2) \bar{u} = 0$

$$\frac{dx_2}{dx_1} = -\frac{U'_{x_1}}{U'_{x_2}} = MRS$$

- Indifference curves for:
 - monotonic preferences;
 - strictly monotonic preferences;
 - convex preferences

6 Next Class

- Common Utility Functions
- Utility Maximization