Economics 101A (Lecture 4)

Stefano DellaVigna

September 8, 2005

Outline

1. Constrained Maximization

2. Envelope Theorem II
3. Preferences
4. Properties of Preferences

5. From Preferences to Utility

1 Constrained Maximization

- Ch. 2, pp. 38-44 [OLD, 39-46]
- So far unconstrained maximization on R (or open subsets)
- What if there are constraints to be satisfied?
- Example 1: $\max _{x, y} x * y$ subject to $3 x+y=5$
- Substitute it in: $\max _{x, y} x *(5-3 x)$
- Solution: $x^{*}=$
- Example 2: $\max _{x, y} x y$ subject to $x \exp (y)+y \exp (x)=$ 5
- Solution: ?
- Graphical intuition on general solution.
- Example 3: $\max _{x, y} f(x, y)=x * y$ s.t. $h(x, y)=$ $x^{2}+y^{2}-1=0$
- Draw $0=h(x, y)=x^{2}+y^{2}-1$.
- Draw $x * y=K$ with $K>0$. Vary K
- Where is optimum?
- Where $d y / d x$ along curve $x y=K$ equals $d y / d x$ along curve $x^{2}+y^{2}-1=0$
- Write down these slopes.
- Idea: Use implicit function theorem.
- Heuristic solution of system

$$
\begin{aligned}
& \max _{x, y} f(x, y) \\
& \text { s.t. } h(x, y)=0
\end{aligned}
$$

- Assume:
- continuity and differentiability of h
$-h_{y}^{\prime} \neq 0\left(\right.$ or $\left.h_{x}^{\prime} \neq 0\right)$
- Implicit function Theorem: Express y as a function of x (or x as function of y)!
- Write system as $\max _{x} f(x, g(x))$
- f.o.c.: $f_{x}^{\prime}(x, g(x))+f_{y}^{\prime}(x, g(x)) * \frac{\partial g(x)}{\partial x}=0$
- What is $\frac{\partial g(x)}{\partial x}$?
- Substitute in and get: $f_{x}^{\prime}(x, g(x))+f_{y}^{\prime}(x, g(x)) *$ $\left(-h_{x}^{\prime} / h_{y}^{\prime}\right)=0$ or

$$
\frac{f_{x}^{\prime}(x, g(x))}{f_{y}^{\prime}(x, g(x))}=\frac{h_{x}^{\prime}(x, g(x))}{h_{y}^{\prime}(x, g(x))}
$$

- Lagrange Multiplier Theorem, necessary condition. Consider a problem of the type

$$
\begin{gathered}
\max _{x_{1}, \ldots, x_{n}} f\left(x_{1}, x_{2}, \ldots, x_{n} ; \mathbf{p}\right) \\
\text { s.t. } \quad\left\{\begin{array}{c}
h_{1}\left(x_{1}, x_{2}, \ldots, x_{n} ; \mathbf{p}\right)=0 \\
h_{2}\left(x_{1}, x_{2}, \ldots, x_{n} ; \mathbf{p}\right)=0 \\
\ldots \\
h_{m}\left(x_{1}, x_{2}, \ldots, x_{n} ; \mathbf{p}\right)=0
\end{array}\right.
\end{gathered}
$$

with $n>m$. Let $\mathbf{x}^{*}=\mathbf{x}^{*}(\mathbf{p})$ be a local solution to this problem.

- Assume:
- f and h differentiable at x^{*}
- the following Jacobian matrix at \mathbf{x}^{*} has maximal rank

$$
J=\left(\begin{array}{ccc}
\frac{\partial h_{1}}{\partial x_{1}}\left(\mathbf{x}^{*}\right) & \ldots & \frac{\partial h_{1}}{\partial x_{n}}\left(\mathbf{x}^{*}\right) \\
\ldots & \ldots & \ldots \\
\frac{\partial h_{m}}{\partial x_{1}}\left(\mathbf{x}^{*}\right) & \ldots & \frac{\partial h_{m}}{\partial x_{n}}\left(\mathbf{x}^{*}\right)
\end{array}\right)
$$

- Then, there exists a vector $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ such that $\left(\mathrm{x}^{*}, \boldsymbol{\lambda}\right)$ maximize the Lagrangean function

$$
L(\mathbf{x}, \boldsymbol{\lambda})=f(\mathbf{x} ; \mathbf{p})-\sum_{j=0}^{m} \lambda_{j} h_{j}(\mathbf{x} ; \mathbf{p})
$$

- Case $n=2, m=1$.
- First order conditions are

$$
\frac{\partial f(\mathbf{x} ; \mathbf{p})}{\partial x_{i}}-\lambda \frac{\partial h(\mathbf{x} ; \mathbf{p})}{\partial x_{i}}=0
$$

for $i=1,2$

- Rewrite as

$$
\frac{f_{x_{1}}^{\prime}}{f_{x_{2}}^{\prime}}=\frac{h_{x_{1}}^{\prime}}{h_{x_{2}}^{\prime}}
$$

- Constrained Maximization, Sufficient condition for the case $n=2, m=1$.
- If \mathbf{x}^{*} satisfies the Lagrangean condition, and the determinant of the bordered Hessian

$$
H=\left(\begin{array}{ccc}
0 & -\frac{\partial h}{\partial x_{1}}\left(\mathrm{x}^{*}\right) & -\frac{\partial h}{\partial x_{2}}\left(\mathrm{x}^{*}\right) \\
-\frac{\partial h}{\partial x_{1}}\left(\mathrm{x}^{*}\right) & \frac{\partial^{2} L}{\partial^{2} x_{1}}\left(\mathrm{x}^{*}\right) & \frac{\partial^{2} L}{\partial x^{2} \partial x_{1}}\left(\mathrm{x}^{*}\right) \\
-\frac{\partial h}{\partial x_{2}}\left(\mathrm{x}^{*}\right) & \frac{\partial^{2} L}{\partial x_{1} \partial x_{2}}\left(\mathrm{x}^{*}\right) & \frac{\partial^{2} L}{\partial x_{2} \partial x_{2}}\left(\mathrm{x}^{*}\right)
\end{array}\right)
$$

is positive, then x^{*} is a constrained maximum.

- If it is negative, then x^{*} is a constrained minimum.
- Why? This is just the Hessian of the Lagrangean L with respect to λ, x_{1}, and x_{2}
- Example 4: $\max _{x, y} x^{2}-x y+y^{2}$ s.t. $x^{2}+y^{2}-p=0$
- $\max _{x, y, \lambda} x^{2}-x y+y^{2}-\lambda\left(x^{2}+y^{2}-p\right)$
- F.o.c. with respect to x :
- F.o.c. with respect to y :
- F.o.c. with respect to λ :
- Candidates to solution?
- Maxima and minima?

2 Envelope Theorem II

- Envelope Theorem II: Ch. 2, pp. 44 [OLD, 46-47]
- Envelope Theorem for Constrained Maximization. In problem above consider $F(p) \equiv f\left(\mathbf{x}^{*}(\mathbf{p}) ; \mathbf{p}\right)$. We are interested in $d F(p) / d p$. We can neglect indirect effects:

$$
\frac{d F}{d p_{i}}=\frac{\partial f\left(\mathbf{x}^{*}(\mathbf{p}) ; \mathbf{p}\right)}{\partial p_{i}}-\sum_{j=0}^{m} \lambda_{j} \frac{\partial h_{j}\left(\mathbf{x}^{*}(\mathbf{p}) ; \mathbf{p}\right)}{\partial p_{i}}
$$

- Example 4 (continued). $\max _{x, y} x^{2}-x y+y^{2}$ s.t. $x^{2}+y^{2}-p=0$
- $d f\left(x^{*}(p), y^{*}(p)\right) / d p$?
- Envelope Theorem.

3 Preferences

- Part 1 of our journey in microeconomics: Consumer Theory
- Choice of consumption bundle:

1. Consumption today or tomorrow
2. work, study, and leisure
3. choice of government policy

- Starting point: preferences.

1. 1 egg today $\succ 1$ chicken tomorrow
2. 1 hour doing problem set $\succ 1$ hour in class \succ ... $\succ 1$ hour out with friends
3. War on Iraq \succ Sanctions on Iraq

4 Properties of Preferences

- Nicholson, Ch. 3, pp. 69-70 [OLD: 66]
- Commodity set X (apples vs. strawberries, work vs. leisure, consume today vs. tomorrow)
- Preference relation \succeq over X
- A preference relation \succeq is rational if

1. It is complete: For all x and y in X, either $x \succeq y$, or $y \succeq x$ or both
2. It is transitive: For all x, y, and $z, x \succeq y$ and $y \succeq z$ implies $x \succeq z$

- Preference relation \succeq is continuous if for all y in X, the sets $\{x: x \succeq y\}$ and $\{x: y \succeq x\}$ are closed sets.

- Example: $X=R^{2}$ with map of indifference curves

- Counterexamples:

1. Incomplete preferences. Dominance rule.
2. Intransitive preferences. Quasi-discernible differences.
3. Discontinuous preferences. Lexicographic order

- Indifference relation $\sim: x \sim y$ if $x \succeq y$ and $y \succeq x$
- Strict preference: $x \succ y$ if $x \succeq y$ and not $y \succeq x$
- Exercise. If \succeq is rational,
$-\succ$ is transitive
$-\sim$ is transitive
- Reflexive property of \succeq. For all $x, x \succeq x$.
- Other features of preferences
- Preference relation \succeq is:
- monotonic if $x \geq y$ implies $x \succeq y$.
- strictly monotonic if $x \geq y$ and $x_{j}>y_{j}$ for some j implies $x \succ y$.
- convex if for all x, y, and z in X such that $x \succeq z$ and $y \succeq z$, then $t x+(1-t) y \succeq z$ for all t in [0, 1]

5 From preferences to utility

- Nicholson, Ch. 3
- Economists like to use utility functions $u: X \rightarrow R$
- $u(x)$ is 'liking' of good x
- $u(a)>u(b)$ means: I prefer a to b.
- Def. Utility function u represents preferences \succeq if, for all x and y in $X, x \succeq y$ if and only if $u(x) \geq$ $u(y)$.
- Theorem. If preference relation \succeq is rational and continuous, there exists a continuous utility function $u: X \rightarrow R$ that represents it.
- [Skip proof]
- Example:

$$
\left(x_{1}, x_{2}\right) \succeq\left(y_{1}, y_{2}\right) \text { iff } x_{1}+x_{2} \geq y_{1}+y_{2}
$$

- Draw:
- Utility function that represents it: $u(x)=x_{1}+x_{2}$
- But... Utility function representing \succeq is not unique
- Take $\exp (u(x))$
- $u(a)>u(b) \Longleftrightarrow \exp (u(a))>\exp (u(b))$
- If $u(x)$ represents preferences \succeq and f is a strictly increasing function, then $f(u(x))$ represents \succeq as well.
- If preferences are represented from a utility function, are they rational?
- completeness
- transitivity
- Indifference curves: $u\left(x_{1}, x_{2}\right)=\bar{u}$
- They are just implicit functions! $u\left(x_{1}, x_{2}\right)-\bar{u}=0$

$$
\frac{d x_{2}}{d x_{1}}=-\frac{U_{x_{1}}^{\prime}}{U_{x_{2}}^{\prime}}=M R S
$$

- Indifference curves for:
- monotonic preferences;
- strictly monotonic preferences;
- convex preferences

6 Next Class

- Common Utility Functions
- Utility Maximization

