Economics 101A (Lecture 5)

Stefano DellaVigna

September 13, 2005

Outline

- 1. Properties of Preferences (continued)
- 2. From Preferences to Utility (and viceversa)
- 3. Common Utility Functions
- 4. Utility maximization

1 Properties of Preferences

- Nicholson, Ch. 3, pp. 69-70 [OLD: 66]
- Commodity set X (apples vs. strawberries, work vs. leisure, consume today vs. tomorrow)
- Preference relation \succeq over X
- A preference relation \succeq is *rational* if
 - 1. It is *complete*: For all x and y in X, either $x \succeq y$, or $y \succeq x$ or both
 - 2. It is *transitive*: For all x, y, and $z, x \succeq y$ and $y \succeq z$ implies $x \succeq z$
- Preference relation ≽ is continuous if for all y in X, the sets {x : x ≽ y} and {x : y ≽ x} are closed sets.

• Example: $X = R^2$ with map of indifference curves

- Counterexamples:
 - 1. Incomplete preferences. Dominance rule.

2. Intransitive preferences. Quasi-discernible differences.

3. Discontinuous preferences. Lexicographic order

- Indifference relation $\sim: x \sim y \text{ if } x \succeq y \text{ and } y \succeq x$
- Strict preference: $x \succ y$ if $x \succeq y$ and not $y \succeq x$
- Exercise. If \succeq is rational,
 - \succ is transitive
 - \sim is transitive
 - Reflexive property of \succeq . For all $x, x \succeq x$.

- Other features of preferences
- Preference relation \succeq is:

- monotonic if $x \ge y$ implies $x \succeq y$.

- strictly monotonic if $x \ge y$ and $x_j > y_j$ for some j implies $x \succ y$.

convex if for all x, y, and z in X such that x ≥ z
and y ≥ z, then tx + (1 - t)y ≥ z for all t in
[0, 1]

2 From preferences to utility

- Nicholson, Ch. 3
- Economists like to use utility functions $u:X\to R$
- u(x) is 'liking' of good x
- u(a) > u(b) means: I prefer a to b.
- Def. Utility function u represents preferences ≽ if, for all x and y in X, x ≽ y if and only if u(x) ≥ u(y).
- Theorem. If preference relation ≽ is rational and continuous, there exists a continuous utility function u : X → R that represents it.

- [Skip proof]
- Example:

 $(x_1, x_2) \succeq (y_1, y_2)$ iff $x_1 + x_2 \ge y_1 + y_2$

• Draw:

- Utility function that represents it: $u(x) = x_1 + x_2$
- But... Utility function representing \succeq is not unique
- Take 3u(x) or exp(u(x))
- $u(a) > u(b) \iff \exp(u(a)) > \exp(u(b))$

If u(x) represents preferences ≽ and f is a strictly increasing function, then f(u(x)) represents ≿ as well.

- If preferences are represented from a utility function, are they rational?
 - completeness
 - transitivity

- Indifference curves: $u(x_1, x_2) = \overline{u}$
- They are just implicit functions! $u(x_1, x_2) \bar{u} = 0$

$$\frac{dx_2}{dx_1} = -\frac{U'_{x_1}}{U'_{x_2}} = MRS$$

- Indifference curves for:
 - monotonic preferences;
 - strictly monotonic preferences;
 - convex preferences

3 Common utility functions

- Nicholson, Ch. 3, pp. 82-86 [OLD: 80-84]
- 1. Cobb-Douglas preferences: $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$

•
$$MRS = -\alpha x_1^{\alpha-1} x_2^{1-\alpha} / (1-\alpha) x_1^{\alpha} x_2^{-\alpha} = \frac{\alpha}{1-\alpha} \frac{x_2}{x_1}$$

2. Perfect substitutes: $u(x_1, x_2) = \alpha x_1 + \beta x_2$

•
$$MRS = -\alpha/\beta$$

3. Perfect complements: $u(x_1, x_2) = \min(\alpha x_1, \beta x_2)$

•
$$MRS$$
 discontinuous at $x_2 = \frac{\alpha}{\beta} x_1$

4. Constant Elasticity of Substitution: $u(x_1, x_2) = \left(\alpha x_1^{\rho} + \beta x_2^{\rho}\right)^{1/\rho}$

•
$$MRS = -\frac{\alpha}{\beta} \left(\frac{x_1}{x_2}\right)^{\rho-1}$$

- if $\rho = 1$, then...
- if $\rho = 0$, then...
- if $\rho \to -\infty$, then...

4 Utility Maximization

- Nicholson, Ch. 4, pp. 94-105 [OLD: 91-103]
- $X = R_{+}^{2}$ (2 goods)
- Consumers: choose bundle $x = (x_1, x_2)$ in X which yields highest utility.
- Constraint: income = M
- Price of good $1 = p_1$, price of good $2 = p_2$
- Bundle x is feasible if $p_1x_1 + p_2x_2 \le M$
- Consumer maximizes

 $\max_{x_1, x_2} u(x_1, x_2)$ s.t. $p_1 x_1 + p_2 x_2 \le M$ $x_1 \ge 0, \ x_2 \ge 0$

- Maximization subject to inequality. How do we solve that?
- Trick: *u* strictly increasing in at least one dimension.
 (≻ strictly monotonic)
- Budget constraint always satisfied with equality

• Ignore temporarily $x_1 \ge 0$, $x_2 \ge 0$ and check afterwards that they are satisfied for x_1^* and x_2^* .

• Problem becomes

$$\max_{x_1, x_2} u(x_1, x_2)$$

s.t. $p_1 x_1 + p_2 x_2 - M = 0$

•
$$L(x_1, x_2) = u(x_1, x_2) - \lambda(p_1 x_1 + p_2 x_2 = M)$$

• F.o.c.s:

$$u'_{x_i} - \lambda p_i = 0$$
 for $i = 1, 2$
 $p_1 x_1 + p_2 x_2 - M = 0$

• Moving the two terms across and dividing, we get:

$$MRS = -\frac{u'_{x_1}}{u'_{x_2}} = -\frac{p_1}{p_2}$$

• Graphical interpretation.

• Example with CES utility function.

$$\max_{x_1, x_2} \left(\alpha x_1^{\rho} + \beta x_2^{\rho} \right)^{1/\rho}$$

s.t. $p_1 x_1 + p_2 x_2 - M = 0$

- Lagrangean =
- F.o.c.:

• Special case: $\rho = 0$ (Cobb-Douglas)

5 Next Class

- Utility Maximization tricky cases
- Indirect Utility Function
- Comparative Statics:
 - with respect to price
 - with respect to income