Economics 101A (Lecture 15)

Stefano DellaVigna

October 20, 2005

Outline

- 1. Time Inconsistency II
- 2. Health Club Attendance
- 3. Production: Introduction
- 4. Production Function
- 5. Returns to Scale
- 6. Two-step Cost Minimization

1 Time Inconsistency II

- Alternative specification (Akerlof, 1991; Laibson, 1997; O'Donoghue and Rabin, 1999)
- Utility at time t is $u(c_t, c_{t+1}, c_{t+2})$:

$$u(c_t) + \frac{\beta}{1+\delta}u(c_{t+1}) + \frac{\beta}{(1+\delta)^2}u(c_{t+2}) + \dots$$

• Discount factor is

$$1, \frac{\beta}{1+\delta}, \frac{\beta}{(1+\delta)^2}, \frac{\beta}{(1+\delta)^3}, \dots$$

instead of

$$1, rac{1}{1+\delta}, rac{1}{(1+\delta)^2}, rac{1}{(1+\delta)^3}, ...$$

- What is the difference?
- Immediate gratification: $\beta < 1$

- Back to our problem: **Period 1**.
- Maximization problem:

$$\max U(c_1) + \frac{\beta}{1+\delta} EU(c_2)$$

s.t. $c_1 + \frac{1}{1+r} c_2 \le M'_1 + \frac{1}{1+r} M_2$

- First order conditions:
- Ratio of f.o.c.s:

$$\frac{U'(c_1^*)}{EU'(c_2^*)} = \beta \frac{1+r}{1+\delta}$$

- Now, **period 0** with commitment.
- Maximization problem:

$$\max U(c_0) + \frac{\beta}{1+\delta}U(c_1) + \frac{\beta}{(1+\delta)^2}EU(c_2)$$

s.t. $c_1 + \frac{1}{1+r}c_2 \le M'_1 + \frac{1}{1+r}M_2$

- First order conditions:
- Ratio of f.o.c.s:

$$\frac{U'(c_1^{*,c})}{EU'(c_2^{*,c})} = \frac{1+r}{1+\delta}$$

- The two conditions differ!
- Time inconsistency: $c_1^{\ast,c} < c_1^{\ast}$ and $c_2^{\ast,c} > c_2^{\ast}$
- The agent allows him/herself too much immediate consumption and saves too little

- Ok, we agree. but should we study this as economists?
- YES!
 - One trillion dollars in credit card debt;
 - Most debt is in teaser rates;
 - Two thirds of Americans are overwight or obese;
 - \$10bn health-club industry

- Is this testable?
 - In the laboratory?
 - In the field?

2 Health Club Attendance

- Health club industry study (DellaVigna and Malmendier, 2002)
- 3 health clubs
- Data on attendance from swiping cards

- Choice of contracts:
 - Monthly contract with average price of \$75
 - 10-visit pass for \$100

• Consider users that choose monthly contract. Attendance? • Attend on average 4.8 times per *month*

• Pay on average over \$17

• Average delay of 2.2 months (\$185) between last attendance and contract termination

• Over membership, user could have saved \$700 by paying per visit

- Health club attendance:
 - immediate cost \boldsymbol{c}
 - delayed benefit \boldsymbol{b}
- At sign-up (attend tomorrow):

$$NB^{t} = -\frac{\beta}{1+\delta}c + \frac{\beta}{(1+\delta)^{2}}b$$

• Plan to attend if $NB^t > 0$

$$c < rac{1}{(1+\delta)}b$$

• Once moment to attend comes:

$$NB = -c + \frac{\beta}{(1+\delta)}b$$

• Attend if
$$NB > 0$$

$$c < rac{eta}{(1+\delta)}b$$

• Interpretations?

• Users are buying a commitment device

- User underestimate their future self-control problems:
 - They overestimate future attendance
 - They delay cancellation

3 Production: Introduction

• Second half of the economy. Production

- Example. Ford and the Minivan (Petrin, 2002):
 - Ford had idea: "Mini/Max" (early '70s)
 - Did Ford produce it?
 - No!
 - Ford was worried of cannibalizing station wagon sector
 - Chrysler introduces Dodge Caravan (1984)
 - Chrysler: \$1.5bn profits (by 1987)!

• Why need separate treatment?

• Perhaps firms maximize utility...

- ...we can be more precise:
 - Competition
 - Institutional structure

4 Production Function

- Nicholson, Ch. 7, pp. 183–190; 195–200 [OLD: Ch. 11, pp. 268–275; 280–285]
- Production function: $y = f(\mathbf{z})$. Function $f: \mathbb{R}^n_+ \to \mathbb{R}_+$
- Inputs $\mathbf{z} = (z_1, z_2, ..., z_n)$: labor, capital, land, human capital
- Output y: Minivan, Intel Pentium III, mangoes (Philippines)
- Properties of f:
 - no free lunches: f(0) = 0
 - positive marginal productivity: $f'_i(\mathbf{z}) > 0$
 - decreasing marginal productivity: $f_{i,i}''(\mathbf{z}) < 0$

- Isoquants $Q(y) = \{\mathbf{x} | f(\mathbf{x}) = y\}$
- Set of inputs \mathbf{z} required to produce quantity y
- Special case. Two inputs:

–
$$z_1 = L$$
 (labor)

 $-z_2 = K$ (capital)

- Isoquant: f(L, K) y = 0
- Slope of isoquant dK/dL = MRTS

• Convex production function if convex isoquants

• Reasonable: combine two technologies and do better!

• Mathematically, $d^2K/d^2L =$

5 Returns to Scale

- Nicholson, Ch. 7, pp. 190–193 [OLD: Ch. 11, pp. 275–278]
- Effect of increase in labor: f'_L
- Increase of all inputs: $f(t\mathbf{z})$ with t scalar, t > 1
- How much does input increase?

- Decreasing returns to scale: for all z and t > 1, f(tz) < tf(z)

- Constant returns to scale: for all z and t > 1,

$$f\left(t\mathbf{z}\right) = tf\left(\mathbf{z}\right)$$

– Increasing returns to scale: for all \mathbf{z} and $t > \mathbf{1}$,

 $f(t\mathbf{z}) > tf(\mathbf{z})$

- Example: $y = f(K, L) = AK^{\alpha}L^{\beta}$
- Marginal product of labor: $f'_L =$
- Decreasing marginal product of labor: $f_L'' =$
- MRTS =

• Convex isoquant?

• Returns to scale: $f(tK, tL) = A(tK)^{\alpha} (tL)^{\beta} = t^{\alpha+\beta}AK^{\alpha}L^{\beta} = t^{\alpha+\beta}f(K,L)$

6 Two-step Cost minimization

- Nicholson, pp. 212–220 [OLD, Ch. 12, pp. 298– 307]
- Objective of firm: Produce output that generates maximal profit.

- Decompose problem in two:
 - Given production level y, choose cost-minimizing combinations of inputs
 - Choose optimal level of y.

• *First step.* Cost-Minimizing choice of inputs

• Two-input case: Labor, Capital

- Input prices:
 - Wage w is price of L
 - Interest rate r is rental price of capital K
- Expenditure on inputs: wL + rK

• Firm objective function:

 $\min wL + rK$
s.t.f(L,K) \ge y

• Compare with expenditure minimization for consumers

• First order conditions:

$$w - \lambda f'_L = \mathbf{0}$$

 $\quad \text{and} \quad$

$$r - \lambda f'_K = \mathbf{0}$$

• Rewrite as

$$\frac{f_L'(L^*, K^*)}{f_K'(L^*, K^*)} = \frac{w}{r}$$

• MRTS (slope of isoquant) equals ratio of input prices

• Graphical interpretation

• Derived demand for inputs:

$$-L = L^*(w, r, y)$$

$$-K = K^*(w, r, y)$$

• Value function at optimum is **cost function**:

$$c(w, r, y) = wL^{*}(r, w, y) + rK^{*}(r, w, y)$$

• Second step. Given cost function, choose optimal quantity of y as well

- Price of output is p.
- Firm's objective:

$$\max py - c(w, r, y)$$

• First order condition:

$$p-c_{y}^{\prime}\left(w,r,y
ight) =$$
 0

• Price equals marginal cost – very important!

7 Next Lecture

- Continue Cost Minimization
- Solve an Example
- Cases in which s.o.c. are not satisfied
- Start Profit Maximization