Economics 101A (Lecture 17)

Stefano DellaVigna

October 27, 2005

Outline

- 1. Cost Minimization: Example II
- 2. Cost Curves and Supply Function
- 3. One-step Profit Maximization
- 4. Introduction to Market Equilibrium

1 Cost Minimization: Example II

• Continue example above: $y = f(L, K) = AK^{\alpha}L^{\beta}$

• Define
$$B := w \left(\frac{w \alpha}{r \beta}\right)^{-\frac{\alpha}{\alpha+\beta}} + r \left(\frac{w \alpha}{r \beta}\right)^{\frac{\beta}{\alpha+\beta}}$$

• Cost-minimizing output choice:

$$\max py - B\left(\frac{y}{A}\right)^{\frac{1}{\alpha+\beta}}$$

• First order condition:

$$p - \frac{1}{\alpha + \beta} \frac{B}{A} \left(\frac{y}{A}\right)^{\frac{1 - (\alpha + \beta)}{\alpha + \beta}} = \mathbf{0}$$

• Second order condition:

$$-\frac{1}{\alpha+\beta}\frac{1-(\alpha+\beta)}{\alpha+\beta}\frac{B}{A^{2}}\left(\frac{y}{A}\right)^{\frac{1-2(\alpha+\beta)}{\alpha+\beta}}<0$$

• Solution:

$$\begin{aligned} &-\alpha + \beta = 1 \text{ (CRS):} \\ &* \text{ S.o.c. equal to } 0 \\ &* \text{ Solution depends on } p \\ &* \text{ For } p > \frac{1}{\alpha + \beta} \frac{B}{A} \text{, produce } y^* \to \infty \\ &* \text{ For } p = \frac{1}{\alpha + \beta} \frac{B}{A} \text{, produce any } y^* \in [0, \infty) \\ &* \text{ For } p < \frac{1}{\alpha + \beta} \frac{B}{A} \text{, produce } y^* = 0 \end{aligned}$$

- $\alpha + \beta > 1$ (IRS):
 - * S.o.c. positive
 - * Solution of f.o.c. is a minimum!
 - * Solution is $y^* \to \infty$.
 - * Keep increasing production since higher production is associated iwth higher returns

- $\alpha + \beta < 1$ (DRS):
 - * s.o.c. negative. OK!
 - * Solution of f.o.c. is an interior optimum
 - * This is the only "well-behaved" case under perfect competition
 - * Here can define a supply function

2 Cost Curves

- Nicholson, Ch. 8, pp. 220–228; Ch. 9, pp. 256–259 [OLD: Ch. 12, pp. 307–312 and Ch. 13, pp. 342–346.]
- Marginal costs $MC = \partial c / \partial y \rightarrow \text{Cost minimization}$ $p = MC = \partial c (w, r, y) / \partial y$

• Average costs $AC = c/y \rightarrow$ Does firm break even? $\pi = py - c(w, r, y) > 0$ iff $\pi/y = p - c(w, r, y) / y > 0$ iff c(w, r, y) / y = AC < p

• **Supply function.** Portion of marginal cost *MC* above average costs.(price equals marginal cost)

- Assume only 1 input (expenditure minimization is trivial)
- Case 1. Production function. $y = L^{\alpha}$

- Cost function? (cost of input is
$$w$$
):
 $c(w, y) = wL^*(w, y) = wy^{1/\alpha}$

- Marginal cost?

$$\frac{\partial c(w,y)}{\partial y} = \frac{1}{\alpha} w y^{(1-\alpha)/\alpha}$$

- Average cost
$$c(w, y) / y$$
?
$$\frac{c(w, y)}{y} = \frac{wy^{1/\alpha}}{y} = wy^{(1-\alpha)/\alpha}$$

• Case 1a. $\alpha > 1$. Plot production function, total cost, average and marginal. Supply function?

• Case 1b. $\alpha = 1$. Plot production function, total cost, average and marginal. Supply function?

• Case 1c. $\alpha < 1$. Plot production function, total cost, average and marginal. Supply function?

• **Case 2.** *Non-convex technology.* Plot production function, total cost, average and marginal. Supply function?

• **Case 3.** *Technology with setup cost.* Plot production function, total cost, average and marginal. Supply function?

2.1 Supply Function

- Supply function: $y^* = y^*(w, r, p)$
- What happens to y^* as p increases?
- Is the supply function upward sloping?
- Remember f.o.c:

$$p - c'_y(w, r, y) = \mathbf{0}$$

• Implicit function:

$$\frac{\partial y^{*}}{\partial p} = -\frac{1}{-c_{y,y}^{\prime\prime}(w,r,y)} > 0$$

as long as s.o.c. is satisfied.

• Yes! Supply function is upward sloping.

3 One-step Profit Maximization

- Nicholson, Ch. 9, pp. 265–270 [OLD: Ch. 13, pp. 346–350].
- One-step procedure: maximize profits

- \bullet Perfect competition. Price p is given
 - Firms are small relative to market
 - Firms do not affect market price p_M

- Will firm produce at $p > p_M$?
- Will firm produce at $p < p_M$?

 $- \Longrightarrow p = p_M$

• Revenue: py = pf(L, K)

• Cost:
$$wL + rK$$

• Profit pf(L, K) - wL - rK

• Agent optimization:

$$\max_{L,K} pf(L,K) - wL - rK$$

• First order conditions:

$$pf_L'(L,K) - w = \mathbf{0}$$

and

$$pf_K'(L,K) - r = \mathbf{0}$$

• Second order conditions? $pf_{L,L}''(L,K) < 0$ and

$$|H| = \begin{vmatrix} pf_{L,L}''(L,K) & pf_{L,K}''(L,K) \\ pf_{L,K}''(L,K) & pf_{K,K}''(L,K) \end{vmatrix} = \\ = p^2 \left[f_{L,L}''f_{K,K}'' - \left(f_{L,K}'' \right)^2 \right] > 0$$

• Need $f_{L,K}''$ not too large for maximum

- Comparative statics with respect to to p, w, and r.
- What happens if w increases?

$$\frac{\partial L^{*}}{\partial w} = -\frac{\begin{vmatrix} -1 & pf_{L,K}''(L,K) \\ 0 & pf_{K,K}''(L,K) \end{vmatrix}}{\begin{vmatrix} pf_{L,L}''(L,K) & pf_{L,K}''(L,K) \\ pf_{L,K}''(L,K) & pf_{K,K}''(L,K) \end{vmatrix}} < 0$$

 $\quad \text{and} \quad$

$$\frac{\partial L^*}{\partial r} =$$

• Sign of
$$\partial L^* / \partial r$$
 depends on $f_{L,K}''$.

4 Introduction to Market Equilibrium

- Nicholson, Ch. 10, pp. 279–295 [OLD: Ch. 14, pp. 368–382.
- Two ways to analyze firm behavior:
 - Two-Step Cost Minimization
 - One-Step Profit Maximization

- What did we learn?
 - Optimal demand for inputs L^* , K^* (see above)
 - Optimal quantity produced y^*

• Supply function. $y = y^*(p, w, r)$

- From profit maximization:

$$y = f(L^{*}(p, w, r), K^{*}(p, w, r))$$

- From cost minimization:

MC curve above AC

– Supply function is increasing in p

• Market Equilibrium. Equate demand and supply.

- Aggregation?
- Industry supply function!

5 Next Lecture

- Aggregation
- Market Equilibrium
- Comparative Statics of Equilibrium
- Taxes and Subsidies
- Long-Run Equilibrium