Economics 101A (Lecture 18)

Stefano DellaVigna

November 1, 2005

Outline

1. Supply Function

2. One-step Profit Maximization
3. Introduction to Market Equilibrium
4. Aggregation
5. Market Equilibrium in the Short-Run

1 Supply Function

- Supply function: $y^{*}=y^{*}(w, r, p)$
- What happens to y^{*} as p increases?
- Is the supply function upward sloping?
- Remember f.o.c:

$$
p-c_{y}^{\prime}(w, r, y)=0
$$

- Implicit function:

$$
\frac{\partial y^{*}}{\partial p}=-\frac{1}{-c_{y, y}^{\prime \prime}(w, r, y)}>0
$$

as long as s.o.c. is satisfied.

- Yes! Supply function is upward sloping.

2 One-step Profit Maximization

- Nicholson, Ch. 9, pp. 265-270 [OLD: Ch. 13, pp. 346-350].
- One-step procedure: maximize profits
- Perfect competition. Price p is given
- Firms are small relative to market
- Firms do not affect market price p_{M}
- Will firm produce at $p>p_{M}$?
- Will firm produce at $p<p_{M}$?
$-\Longrightarrow p=p_{M}$
- Revenue: $p y=p f(L, K)$
- Cost: $w L+r K$
- Profit $p f(L, K)-w L-r K$
- Agent optimization:

$$
\max _{L, K} p f(L, K)-w L-r K
$$

- First order conditions:

$$
p f_{L}^{\prime}(L, K)-w=0
$$

and

$$
p f_{K}^{\prime}(L, K)-r=0
$$

- Second order conditions? $p f_{L, L}^{\prime \prime}(L, K)<0$ and

$$
\begin{aligned}
|H| & =\left|\begin{array}{cc}
p f_{L, L}^{\prime \prime}(L, K) & p f_{L, K}^{\prime \prime}(L, K) \\
p f_{L, K}^{\prime \prime}(L, K) & p f_{K, K}^{\prime \prime}(L, K)
\end{array}\right|= \\
& =p^{2}\left[f_{L, L}^{\prime \prime} f_{K, K}^{\prime \prime}-\left(f_{L, K}^{\prime \prime}\right)^{2}\right]>0
\end{aligned}
$$

- Need $f_{L, K}^{\prime \prime}$ not too large for maximum
- Comparative statics with respect to to p, w, and r.
- What happens if w increases?

$$
\begin{aligned}
& \qquad \frac{\partial L^{*}}{\partial w}=-\frac{\left|\begin{array}{cc}
-1 & p f_{L, K}^{\prime \prime}(L, K) \\
0 & p f_{K, K}^{\prime \prime}(L, K)
\end{array}\right|}{\left|\begin{array}{cc}
p f_{L, L}^{\prime \prime}(L, K) & p f_{L, K}^{\prime \prime}(L, K) \\
p f_{L, K}^{\prime \prime}(L, K) & p f_{K, K}^{\prime \prime}(L, K)
\end{array}\right|}<0 \\
& \text { and } \\
& \qquad \frac{\partial L^{*}}{\partial r}=
\end{aligned}
$$

- Sign of $\partial L^{*} / \partial r$ depends on $f_{L, K}^{\prime \prime}$.

3 Introduction to Market Equilibrium

- Nicholson, Ch. 10, pp. 279-295 [OLD: Ch. 14, pp. 368-382.
- Two ways to analyze firm behavior:
- Two-Step Cost Minimization
- One-Step Profit Maximization
- What did we learn?
- Optimal demand for inputs L^{*}, K^{*} (see above)
- Optimal quantity produced y^{*}
- Supply function. $y=y^{*}(p, w, r)$
- From profit maximization:

$$
y=f\left(L^{*}(p, w, r), K^{*}(p, w, r)\right)
$$

- From cost minimization:

$$
M C \text { curve above } A C
$$

- Supply function is increasing in p
- Market Equilibrium. Equate demand and supply.
- Aggregation?
- Industry supply function!

4 Aggregation

4.1 Producers aggregation

- J companies, $j=1, \ldots, J$, producing good i
- Company j has supply function

$$
y_{i}^{j}=y_{i}^{j *}\left(p_{i}, w, r\right)
$$

- Industry supply function:

$$
Y_{i}\left(p_{i}, w, r\right)=\sum_{j=1}^{J} y_{i}^{j *}\left(p_{i}, w, r\right)
$$

- Graphically,

4.2 Consumer aggregation

- Nicholson, Ch. 10, pp. 279-282 [OLD: Ch. 7, pp. 172-176]
- One-consumer economy
- Utility function $u\left(x_{1}, \ldots, x_{n}\right)$
- prices p_{1}, \ldots, p_{n}
- Maximization \Longrightarrow

$$
\begin{aligned}
x_{1}^{*} & =x_{1}^{*}\left(p_{1}, \ldots, p_{n}, M\right) \\
& : \\
x_{n}^{*} & =x_{n}^{*}\left(p_{1}, \ldots, p_{n}, M\right) .
\end{aligned}
$$

- Focus on good i. Fix prices $p_{1}, \ldots, p_{i-1}, p_{i+1}, \ldots, p_{n}$ and M
- Single-consumer demand function:

$$
x_{i}^{*}=x_{i}^{*}\left(p_{i} \mid p_{1}, \ldots, p_{i-1}, p_{i+1}, \ldots, p_{n}, M\right)
$$

- What is sign of $\partial x_{i}^{*} / \partial p_{i}$?
- Negative if good i is normal
- Negative or positive if good i is inferior
- Aggregation: J consumers, $j=1, \ldots, J$
- Demand for good i by consumer j :

$$
x_{i}^{j *}=x_{i}^{j *}\left(p_{1}, \ldots, p_{n}, M^{j}\right)
$$

- Market demand X_{i} :

$$
\begin{aligned}
& X_{i}\left(p_{1}, \ldots, p_{n}, M^{1}, \ldots, M^{J}\right) \\
= & \sum_{j=1}^{J} x_{i}^{j *}\left(p_{1}, \ldots, p_{n}, M^{j}\right)
\end{aligned}
$$

- Graphically,
- Notice: market demand function depends on distribution of income M^{J}
- Market demand function X_{i} :
- Consumption of good i as function of prices \mathbf{p}
- Consumption of good i as function of income distribution M^{j}

5 Market Equilibrium in the ShortRun

- Nicholson, Ch. 14, pp. 368-382.
- What is equilibrium price p_{i} ?
- Magic of the Market...
- Equilibrium: No excess supply, No excess demand
- Prices \mathbf{p}^{*} equates demand and supply of good i :

$$
Y^{*}=Y_{i}^{S}\left(p_{i}^{*}, w, r\right)=X_{i}^{D}\left(p_{1}^{*}, \ldots, p_{n}^{*}, M^{1}, \ldots, M^{J}\right)
$$

- Graphically,

- Notice: in short-run firms can make positive profits
- Comparative statics exercises with endogenous price p_{i} :
- increase in wage w or interest rate r :
- change in income distribution

6 Comparative statics of equilibrium

- Supply and Demand function of parameter α :

$$
\begin{aligned}
& -Y_{i}^{S}\left(p_{i}, w, r, \alpha\right) \\
& -X_{i}^{D}(\mathbf{p}, \mathbf{M}, \alpha)
\end{aligned}
$$

- How does α affect p^{*} and Y^{*} ?
- Comparative statics with respect to α
- Equilibrium:

$$
Y_{i}^{S}\left(p_{i}, w, r, \alpha\right)=X_{i}^{D}(\mathbf{p}, \mathbf{M}, \alpha)
$$

- Can write equilibrium as implicit function:

$$
Y_{i}^{S}\left(p_{i}, w, r, \alpha\right)-X_{i}^{D}(\mathbf{p}, \mathbf{M}, \alpha)=0
$$

- What is $d p^{*} / d \alpha$?
- Implicit function theorem:

$$
\frac{\partial p^{*}}{\partial \alpha}=-\frac{\frac{\partial Y^{S}}{\partial \alpha}-\frac{\partial X^{D}}{\partial \alpha}}{\frac{\partial Y^{S}}{\partial p}-\frac{\partial X^{D}}{\partial p}}
$$

- What is sign of denominator?
- Sign of $\partial p^{*} / \partial \alpha$ is negative of sign of numerator
- Examples:

1. Fad. Good becomes more fashionable: $\frac{\partial X^{D}}{\partial \alpha}>$ $0 \Longrightarrow \frac{\partial p^{*}}{\partial \alpha}>0$
2. Recession in Europe. Negative demand shock for US firms: $\frac{\partial X^{D}}{\partial \alpha}<0 \Longrightarrow \frac{\partial p^{*}}{\partial \alpha}<0$
3. Oil shock. Import prices increase: $\frac{\partial Y^{S}}{\partial \alpha}<0 \Longrightarrow$ $\frac{\partial p^{*}}{\partial \alpha}>0$
4. Computerization. Improvement in technology. $\frac{\partial Y^{S}}{\partial \alpha}>0 \Longrightarrow \frac{\partial p^{*}}{\partial \alpha}<0$

7 Next Lecture

- Elasticities
- Taxes and Subsidies
- Long-Run Equilibrium

