Economics 101A (Lecture 24)

Stefano DellaVigna

November 28, 2005

Outline

1. Game Theory II

2. Dynamic Games

3. Oligopoly: Stackelberg

1 Game Theory II

- Penalty kick in soccer (matching pennies)

- Equilibrium always exists in mixed strategies σ
- Mixed strategy: allow for probability distibution.
- Back to penalty kick:
- Kicker kicks left with probability k
- Goalie kicks left with probability g
- utility for kicker of playing L :

$$
\begin{aligned}
U_{K}(L, \sigma) & =g U_{K}(L, L)+(1-g) U_{K}(L, R) \\
& =(1-g)
\end{aligned}
$$

- utility for kicker of playing R :

$$
\begin{aligned}
U_{K}(R, \sigma) & =g U_{K}(R, L)+(1-g) U_{K}(R, R) \\
& =g
\end{aligned}
$$

- Optimum?

$$
\begin{aligned}
& -L \succ R \text { if } 1-g>g \text { or } g<1 / 2 \\
& -R \succ L \text { if } 1-g<g \text { or } g>1 / 2 \\
& -L \sim R \text { if } 1-g=g \text { or } g=1 / 2
\end{aligned}
$$

- Plot best response for kicker
- Plot best response for goalie
- Nash Equilibrium is:
- fixed point of best response correspondence
- crossing of best response correspondences

2 Dynamic Games

- Nicholson, Ch. 15, pp. 449-454.[OLD: Ch. 10, pp. 256-259]
- Dynamic games: one player plays after the other
- Decision trees
- Decision nodes
- Strategy is a plan of action at each decision node
- Example: battle of the sexes game

$$
\begin{array}{ccc}
\text { She } \backslash \text { He } & \text { Ballet } & \text { Football } \\
\text { Ballet } & 2,1 & 0,0 \\
\text { Football } & 0,0 & 1,2
\end{array}
$$

- Dynamic version: she plays first
- Subgame-perfect equilibrium. At each node of the tree, the player chooses the strategy with the highest payoff, given the other players' strategy
- Backward induction. Find optimal action in last period and then work backward
- Solution
- Example 2: Entry Game

$$
\begin{array}{ccc}
1 \backslash 2 & \text { Enter } & \text { Do not Enter } \\
\text { Enter } & -1,-1 & 10,0 \\
\text { Do not Enter } & 0,5 & 0,0
\end{array}
$$

- Exercise. Dynamic version.
- Coordination games solved if one player plays first
- Can use this to study finitely repeated games
- Suppose we play the prisoner's dilemma game ten times.

$$
\begin{array}{ccc}
1 \backslash 2 & D & N D \\
D & -4,-4 & -1,-5 \\
N D & -5,-1 & -2,-2
\end{array}
$$

- What is the subgame perfect equilibrium?

3 Oligopoly: Stackelberg

- Setting as in problem set.
- 2 Firms
- Cost: $c(y)=c y$, with $c>0$
- Demand: $p(Y)=a-b Y$, with $a>c>0$ and $b>0$
- Difference: Firm 1 makes the quantity decision first
- Use subgame perfect equilibrium
- Solution:
- Solve first for Firm 2 decision as function of Firm 1 decision:

$$
\max _{y_{2}}\left(a-b y_{2}-b y_{1}^{*}\right) y_{2}-c y_{2}
$$

- F.o.c.:

$$
a-2 b y_{2}^{*}-b y_{1}^{*}-c=0
$$

or

$$
\begin{gathered}
y_{2}^{*}=\frac{a-c}{2 b}-\frac{y_{1}^{*}}{2} \\
p_{D}^{*}=a-b Y_{D}^{*}=a-b\left(2 \frac{a-c}{3 b}\right)=\frac{1}{3} a+\frac{2}{3} c .
\end{gathered}
$$

- Firm 1 takes this response into account in the maximization:

$$
\max _{y_{1}}\left(a-b y_{1}-b y_{2}^{*}\left(y_{1}\right)\right) y_{1}-c y_{1}
$$

or

$$
\max _{y_{1}}\left(a-b y_{1}-b\left(\frac{a-c}{2 b}-\frac{y_{1}}{2}\right)\right) y_{1}-c y_{1}
$$

- F.o.c.:

$$
a-2 b y_{1}-\frac{(a-c)}{2}+b y_{1}-c=0
$$

or

$$
y_{1}^{*}=\frac{a-c}{2 b}
$$

and

$$
y_{2}^{*}=\frac{a-c}{2 b}-\frac{y_{1}^{*}}{2}=\frac{a-c}{2 b}-\frac{a-c}{4 b}=\frac{a-c}{4 b}
$$

- Total production:

$$
Y_{D}^{*}=y_{1}^{*}+y_{2}^{*}=3 \frac{a-c}{4 b}
$$

- Price equals

$$
p^{*}=a-b\left(\frac{3}{4} \frac{a-c}{b}\right)=\frac{1}{4} a+\frac{3}{4} c
$$

- Compare to monopoly:

$$
y_{M}^{*}=\frac{a-c}{2 b}
$$

and

$$
p_{M}^{*}=\frac{a+c}{2}
$$

- Compare to Cournot:

$$
Y_{D}^{*}=y_{1}^{*}+y_{2}^{*}=2 \frac{a-c}{3 b}
$$

and

$$
p_{D}^{*}=\frac{1}{3} a+\frac{2}{3} c .
$$

- Figure
- Compare with Cournot outcome

4 Next lecture

- General equilibrium

- Edgeworth Box

