Economics 101A (Lecture 26)

Stefano DellaVigna

December 6, 2005

Outline

1. Barter

2. Walrasian Equilibrium

3. Example

1 Barter

- Consumers can trade goods 1 and 2
- Allocation $\left(\left(x_{1}^{1 *}, x_{2}^{1 *}\right),\left(x_{1}^{2 *}, x_{2}^{2 *}\right)\right)$ can be outcome of barter if:
- Individual rationality.

$$
u_{i}\left(x_{1}^{i *}, x_{2}^{i *}\right) \geq u_{i}\left(\omega_{1}^{i}, \omega_{2}^{i}\right) \text { for all } i
$$

- Pareto Efficiency. There is no allocation $\left(\left(\hat{x}_{1}^{1}, \hat{x}_{2}^{1}\right),\left(\hat{x}_{1}^{2}, \hat{x}_{2}^{2}\right)\right)$ such that

$$
u_{i}\left(\hat{x}_{1}^{i}, \hat{x}_{2}^{i}\right) \geq u_{i}\left(x_{1}^{i *}, x_{2}^{i *}\right) \text { for all } i
$$

with strict inequality for at least one agent.

- Barter outcomes in Edgeworth box
- Endowments $\left(\omega_{1}, \omega_{2}\right)$
- Area that satisfies individual rationality condition
- Points that satisfy pareto efficiency
- Pareto set. Set of points where indifference curves are tangent
- Contract curve. Subset of Pareto set inside the individually rational area.
- Contract curve $=$ Set of barter equilibria
- Multiple equilibria. Depends on bargaining power.
- Bargaining is time- and information-intensive procedure
- What if there are prices instead?

2 Walrasian Equilibrium

- Prices p_{1}, p_{2}
- Consumer 1 faces a budget set:

$$
p_{1} x_{1}^{1}+p_{2} x_{2}^{1} \leq p_{1} \omega_{1}^{1}+p_{2} \omega_{2}^{1}
$$

- How about consumer 2?
- Budget set of consumer 2 :

$$
\begin{aligned}
& \qquad p_{1} x_{1}^{2}+p_{2} x_{2}^{2} \leq p_{1} \omega_{1}^{2}+p_{2} \omega_{2}^{2} \\
& \text { or }\left(\text { assuming } x_{i}^{1}+x_{i}^{2}=\omega_{i}\right) \\
& p_{1}\left(\omega_{1}-x_{1}^{1}\right)+p_{2}\left(\omega_{1}-x_{2}^{1}\right) \leq p_{1}\left(\omega_{1}-\omega_{1}^{1}\right)+p_{2}\left(\omega_{2}-\omega_{2}^{1}\right)
\end{aligned}
$$

or

$$
p_{1} x_{1}^{1}+p_{2} x_{2}^{1} \geq p_{1} \omega_{1}^{1}+p_{2} \omega_{2}^{1}
$$

- Walrasian Equilibrium. $\left(\left(x_{1}^{1 *}, x_{2}^{1 *}\right),\left(x_{1}^{2 *}, x_{2}^{2 *}\right), p_{1}^{*}, p_{2}^{*}\right)$ is a Walrasian Equilibrium if:
- Each consumer maximizes utility subject to budget constraint:

$$
\begin{aligned}
\left(x_{1}^{i *}, x_{2}^{i *}\right) & =\arg \max _{x_{1}^{i}, x_{2}^{i}} u_{i}\left(\left(x_{1}^{i}, x_{2}^{i}\right)\right. \\
\text { s.t. } p_{1}^{*} x_{1}^{i}+p_{2}^{*} x_{2}^{i} & \leq p_{1}^{*} \omega_{1}^{i}+p_{2}^{*} \omega_{2}^{i}
\end{aligned}
$$

- All markets clear:

$$
x_{j}^{1 *}+x_{j}^{2 *} \leq \omega_{j}^{1}+\omega_{j}^{2} \text { for all } j .
$$

- Compare with partial (Marshallian) equilibrium:
- each consumer maximizes utility
- market for good i clears.
- (no requirement that all markets clear)
- How do we find the Walrasian Equilibria?

- Graphical method.

1. Compute first for each consumer set of utilitymaximizing points as function of prices
2. Check that market-clearing condition holds

- Step 1. Compute optimal points as prices p_{1} and p_{2} vary
- Start with Consumer 1. Find points of tangency between budget sets and indifference curves
- Figure
- Offer curve for consumer 1 :

$$
\left(x_{1}^{1 *}\left(p_{1}, p_{2},\left(\omega_{1}, \omega_{2}\right)\right), x_{2}^{1 *}\left(p_{1}, p_{2},\left(\omega_{1}, \omega_{2}\right)\right)\right)
$$

- Offer curve is set of points that maximize utility as function of prices p_{1} and p_{2}.
- Then find offer curve for consumer 2 :

$$
\left(x_{1}^{2 *}\left(p_{1}, p_{2},\left(\omega_{1}, \omega_{2}\right)\right), x_{2}^{2 *}\left(p_{1}, p_{2},\left(\omega_{1}, \omega_{2}\right)\right)\right)
$$

- Figure
- Step 2. Find intersection(s) of two offer curves
- Walrasian Equilibrium is intersection of the two offer curves!
- Both individuals maximize utility given prices
- Total quantity demanded equals total endowment
- Relate Walrasian Equilibrium to barter equilbrium.
- Walrasian Equilibrium is a subset of barter equilibrium:
- Does WE satisfy Individual Rationality condition?
- Does WE satisfy the Pareto Efficiency condition?
- Walrasian Equilibrium therefore picks one (or more) point(s) on contract curve.

3 Example

- Consumer 1 has Leontieff preferences:

$$
u\left(x_{1}, x_{2}\right)=\min \left(x_{1}^{1}, x_{2}^{1}\right)
$$

- Bundle demanded by consumer 1 :

$$
\begin{aligned}
x_{1}^{1 *} & =x_{2}^{1 *}=x^{1 *}=\frac{p_{1} \omega_{1}^{1}+p_{2} \omega_{2}^{1}}{p_{1}+p_{2}}= \\
& =\frac{\omega_{1}^{1}+\left(p_{2} / p_{1}\right) \omega_{2}^{1}}{1+\left(p_{2} / p_{1}\right)}
\end{aligned}
$$

- Graphically
- Comparative statics:
- increase in ω
- increase in p_{2} / p_{1} :

$$
\begin{aligned}
\frac{d x_{1}^{1 *}}{d p_{2} / p_{1}} & =\frac{-\left(\omega_{2}^{1}\left(1+\left(p_{2} / p_{1}\right)\right)\right.}{\left(1+\left(p_{2} / p_{1}\right) \omega_{2}^{1}\right)} \\
& =\frac{\omega_{2}^{1}-\omega_{1}^{1}}{\left(1+\left(p_{2}\right)\right)^{2}}= \\
& =
\end{aligned}
$$

- Effect depends on income effect through endowments:
* A lot of good $2->$ increase in price of good 2 makes richer
* Little good $2->$ increase in price of good 2 makes poorer
- Notice: Only ratio of prices matters (general feature)
- Consumer 2 has Cobb-Douglas preferences:

$$
u\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}\right)^{.5}\left(x_{2}^{2}\right)^{.5}
$$

- Demands of consumer 2 :

$$
x_{1}^{2 *}=\frac{.5\left(p_{1} \omega_{1}^{1}+p_{2} \omega_{2}^{1}\right)}{p_{1}}=.5\left(\omega_{1}^{1}+\frac{p_{2}}{p_{1}} \omega_{2}^{1}\right)
$$

and

$$
x_{2}^{2 *}=\frac{.5\left(p_{1} \omega_{1}^{1}+p_{2} \omega_{2}^{1}\right)}{p_{2}}=.5\left(\frac{p_{1}}{p_{2}} \omega_{1}^{1}+\omega_{2}^{1}\right)
$$

- Impose Walrasian equilibrium in market 1 :

$$
x_{1}^{1 *}+x_{1}^{2 *}=\omega_{1}^{1}+\omega_{1}^{2}
$$

This implies

$$
\frac{\omega_{1}^{1}+\left(p_{2} / p_{1}\right) \omega_{2}^{1}}{1+\left(p_{2} / p_{1}\right)}+.5\left(\omega_{1}^{1}+\frac{p_{2}}{p_{1}} \omega_{2}^{1}\right)=\omega_{1}^{1}+\omega_{1}^{2}
$$

or
$\frac{.5-.5\left(p_{2} / p_{1}\right)}{1+\left(p_{2} / p_{1}\right)} \omega_{1}^{1}+\frac{.5\left(p_{2} / p_{1}\right)+.5\left(p_{2} / p_{1}\right)^{2}-1}{1+\left(p_{2} / p_{1}\right)} \omega_{2}^{1}=0$
or

$$
\left(\omega_{1}^{1}-2 \omega_{2}^{1}\right)+\left(\omega_{1}^{1}+\omega_{2}^{1}\right)\left(p_{2} / p_{1}\right)+\omega_{2}^{1}\left(p_{2} / p_{1}\right)^{2}=0
$$

- Solution for p_{2} / p_{1} :

$$
\frac{p_{2}}{p_{1}}=\frac{-\left(\omega_{1}^{1}-2 \omega_{2}^{1}\right)+\sqrt{\begin{array}{c}
\left(\omega_{1}^{1}+\omega_{2}^{1}\right)^{2} \\
-4\left(\omega_{1}^{1}-2 \omega_{2}^{1}\right) \omega_{2}^{1}
\end{array}}}{2\left(\omega_{1}^{1}-2 \omega_{2}^{1}\right)}
$$

- Some complicated solution!
- Problem set has solution that is much easier to compute (and interpret)

