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1 Barter

• Consumers can trade goods 1 and 2
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• Pareto Efficiency. There is no allocation
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with strict inequality for at least one agent.



• Barter outcomes in Edgeworth box

• Endowments (ω1, ω2)

• Area that satisfies individual rationality condition

• Points that satisfy pareto efficiency

• Pareto set. Set of points where indifference curves
are tangent



• Contract curve. Subset of Pareto set inside the
individually rational area.

• Contract curve = Set of barter equilibria

• Multiple equilibria. Depends on bargaining power.

• Bargaining is time- and information-intensive proce-
dure

• What if there are prices instead?



2 Walrasian Equilibrium

• Prices p1, p2

• Consumer 1 faces a budget set:
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• How about consumer 2?

• Budget set of consumer 2:
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or (assuming x1i + x2i = ωi)
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• Walrasian Equilibrium.
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— Each consumer maximizes utility subject to bud-
get constraint:
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— All markets clear:

x1∗j + x2∗j ≤ ω1j + ω2j for all j.



• Compare with partial (Marshallian) equilibrium:

— each consumer maximizes utility

— market for good i clears.

— (no requirement that all markets clear)

• How do we find the Walrasian Equilibria?



• Graphical method.

1. Compute first for each consumer set of utility-
maximizing points as function of prices

2. Check that market-clearing condition holds

• Step 1. Compute optimal points as prices p1 and p2
vary

• Start with Consumer 1. Find points of tangency be-
tween budget sets and indifference curves

• Figure



• Offer curve for consumer 1:

(x1∗1 (p1, p2, (ω1, ω2)) , x
1∗
2 (p1, p2, (ω1, ω2)))

• Offer curve is set of points that maximize utility as
function of prices p1 and p2.

• Then find offer curve for consumer 2:

(x2∗1 (p1, p2, (ω1, ω2)) , x
2∗
2 (p1, p2, (ω1, ω2)))

• Figure



• Step 2. Find intersection(s) of two offer curves

• Walrasian Equilibrium is intersection of the two offer
curves!

— Both individuals maximize utility given prices

— Total quantity demanded equals total endowment



• Relate Walrasian Equilibrium to barter equilbrium.

• Walrasian Equilibrium is a subset of barter equilib-
rium:

— Does WE satisfy Individual Rationality condition?

— Does WE satisfy the Pareto Efficiency condition?

• Walrasian Equilibrium therefore picks one (or more)
point(s) on contract curve.



3 Example

• Consumer 1 has Leontieff preferences:

u(x1,x2) = min
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• Bundle demanded by consumer 1:
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• Graphically



• Comparative statics:

— increase in ω

— increase in p2/p1:
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— Effect depends on income effect through endow-
ments:

∗ A lot of good 2 —> increase in price of good
2 makes richer

∗ Little good 2 —> increase in price of good 2
makes poorer

• Notice: Only ratio of prices matters (general feature)



• Consumer 2 has Cobb-Douglas preferences:
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• Impose Walrasian equilibrium in market 1:

x1∗1 + x2∗1 = ω11 + ω21

This implies
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• Solution for p2/p1:
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• Some complicated solution!

• Problem set has solution that is much easier to com-
pute (and interpret)


