Economics 101A (Lecture 2)

Stefano DellaVigna

September 1, 2009

Outline

- 1. Optimization with 1 variable
- 2. Multivariate optimization
- 3. Comparative Statics
- 4. Implicit function theorem

1 Optimization with 1 variable

- Nicholson, Ch.2, pp. 20-23 (20-24, 9th Ed)
- Example. Function $y = -x^2$
- What is the maximum?

- Maximum is at 0
- General method?

- Sure! Use derivatives
- Derivative is slope of the function at a point:

$$\frac{\partial f(x)}{\partial x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

• Necessary condition for maximum x^* is

$$\frac{\partial f(x^*)}{\partial x} = 0 \tag{1}$$

• Try with $y = -x^2$.

•
$$\frac{\partial f(x)}{\partial x} = 0 \Longrightarrow x^* =$$

- Does this guarantee a maximum? No!
- Consider the function $y = x^3$

•
$$\frac{\partial f(x)}{\partial x} = 0 \Longrightarrow x^* =$$

• Plot
$$y = x^3$$
.

• Sufficient condition for a (local) maximum:

$$\frac{\partial f(x^*)}{\partial x} = 0 \text{ and } \left. \frac{\partial^2 f(x)}{\partial^2 x} \right|_{x^*} < 0 \qquad (2)$$

- Proof: At a maximum, $f(x^* + h) f(x^*) < 0$ for all h.
- Taylor Rule: $f(x^*+h) f(x^*) = \frac{\partial f(x^*)}{\partial x}h + \frac{1}{2}\frac{\partial^2 f(x^*)}{\partial^2 x}h^2 + higher order terms.$

• Notice:
$$\frac{\partial f(x^*)}{\partial x} = 0.$$

•
$$f(x^* + h) - f(x^*) < 0$$
 for all $h \Longrightarrow \frac{\partial^2 f(x^*)}{\partial^2 x} h^2 < 0$
 $0 \Longrightarrow \frac{\partial^2 f(x^*)}{\partial^2 x} < 0$

• Careful: Maximum may not exist: $y = \exp(x)$

• Tricky examples:

– Minimum.
$$y = x^2$$

- No maximum.
$$y = \exp(x)$$
 for $x \in (-\infty, +\infty)$

- Corner solution.
$$y = x$$
 for $x \in [0, 1]$

2 Multivariate optimization

- Nicholson, Ch.2, pp. 23-30 (24-32, 9th Ed)
- Function from R^n to R: $y = f(x_1, x_2, ..., x_n)$
- Partial derivative with respect to x_i :

$$= \lim_{h \to 0} \frac{\frac{\partial f(x_1, ..., x_n)}{\partial x_i}}{h}$$

- Slope along dimension i
- Total differential:

$$df = \frac{\partial f(x)}{\partial x_1} dx_1 + \frac{\partial f(x)}{\partial x_2} dx_2 + \dots + \frac{\partial f(x)}{\partial x_n} dx_n$$

• One important economic example

- Example 1: Partial derivatives of $y = f(L, K) = L^{.5}K^{.5}$
- $f'_L =$ (marginal productivity of labor)
- $f'_K =$ (marginal productivity of capital)

•
$$f_{L,K}'' =$$

Maximization over an open set (like R)

• Necessary condition for maximum x^* is

$$\frac{\partial f(x^*)}{\partial x_i} = \mathbf{0} \ \forall i \tag{3}$$

or in vectorial form

$$\nabla f(x) = 0$$

• These are commonly referred to as first order conditions (f.o.c.)

• Sufficient conditions? Define Hessian matrix *H*:

$$H = \begin{pmatrix} f_{x_1,x_1}'' & f_{x_1,x_2}'' & \dots & f_{x_1,x_n}'' \\ \dots & \dots & \dots & \dots \\ f_{x_n,x_1}'' & f_{x_n,x_2}'' & \dots & f_{x_n,x_n}'' \end{pmatrix}$$

- Subdeterminant |H|_i of Matrix H is defined as the determinant of submatrix formed by first i rows and first i columns of matrix H.
- Examples.

- $|H|_1$ is determinant of f''_{x_1,x_1} , that is, f''_{x_1,x_1} - $|H|_2$ is determinant of $H = \begin{pmatrix} f''_{x_1,x_1} & f''_{x_1,x_2} \\ f''_{x_2,x_1} & f''_{x_2,x_2} \end{pmatrix}$

- Sufficient condition for maximum x^* .
 - 1. x^* must satisy first order conditions;
 - 2. Subdeterminants of matrix H must have alternating signs, with subdeterminant of H_1 negative.

- Case with n = 2
- Condition 2 reduces to $f_{x_1,x_1}'' < 0$ and $f_{x_1,x_1}'' f_{x_2,x_2}' (f_{x_1,x_2}'')^2 > 0$.

- Example 2: $h(x_1, x_2) = p_1 * x_1^2 + p_2 * x_2^2 2x_1 5x_2$
- First order condition w/ respect to x_1 ?
- First order condition w/ respect to x_2 ?
- $x_1^*, x_2^* =$
- For which p_1, p_2 is it a maximum?
- For which p_1, p_2 is it a minimum?

3 Comparative statics

- Economics is all about 'comparative statics'
- What happens to optimal economic choices if we change one parameter?
- Example: Car production. Consumer:
 - 1. Car purchase and increase in oil price
 - 2. Car purchase and increase in income
- Producer:
 - 1. Car production and minimum wage increase
 - 2. Car production and decrease in tariff on Japanese cars
- Next two sections

4 Implicit function theorem

- Implicit function: Ch. 2, pp. 31-32 (32-33, 9th Ed)
- Consider function $x_2 = g(x_1, p)$
- Can rewrite as $x_2 g(x_1, p) = 0$
- Implicit function has form: $h(x_2, x_1, p) = 0$
- Often we need to go from implicit to explicit function

- Example 3: $1 x_1 * x_2 e^{x_2} = 0$.
- Write x_1 as function of x_2 :
- Write x_2 as function of x_1 :

- Univariate implicit function theorem (Dini): Consider an equation f(p, x) = 0, and a point (p₀, x₀) solution of the equation. Assume:
 - 1. f continuously differentiable in a neighbourhood of (p_0, x_0) ;
 - 2. $f'_x(p_0, x_0) \neq 0$.
- Then:
 - There is one and only function x = g(p) defined in a neighbourhood of p₀ that satisfies f(p, g(p)) = 0 and g(p₀) = x₀;
 - 2. The derivative of g(p) is

$$g'(p) = -\frac{f'_p(p, g(p))}{f'_x(p, g(p))}$$

- Example 3 (continued): $1 x_1 * x_2 e^{x_2} = 0$
- Find derivative of x₂ = g(x₁) implicitly defined for (x₁, x₂) = (1,0)
- Assumptions:
 - 1. Satisfied?
 - 2. Satisfied?
- Compute derivative

- Multivariate implicit function theorem (Dini): Consider a set of equations (f₁(p₁,..., p_n; x₁,..., x_s) = 0; ...; f_s(p₁,..., p_n; x₁,..., x_s) = 0), and a point (p₀,x₀) solution of the equation. Assume:
 - 1. $f_1, ..., f_s$ continuously differentiable in a neighbourhood of (p_0, x_0) ;
 - 2. The following Jakobian matrix $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$ evaluated at (p_0, x_0) has determinant different from 0:

$$\frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_s} \\ \dots & \dots & \dots \\ \frac{\partial f_s}{\partial x_1} & \dots & \frac{\partial f_s}{\partial xs} \end{pmatrix}$$

• Then:

- 1. There is one and only set of functions x = g(p)defined in a neighbourhood of p_0 that satisfy f(p, g(p)) = 0 and $g(p_0) = x_0$;
- 2. The partial derivative of x_i with respect to p_k is

$$\frac{\partial g_i}{\partial p_k} = -\frac{\det\left(\frac{\partial(f_1, \dots, f_s)}{\partial(x_1, \dots x_{i-1}, p_k, x_{i+1} \dots, x_s)}\right)}{\det\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)}$$

- Example 2 (continued): Max $h(x_1, x_2) = p_1 * x_1^2 + p_2 * x_2^2 2x_1 5x_2$
- f.o.c. $x_1 : 2p_1 * x_1 2 = 0 = f_1(p,x)$
- f.o.c. $x_2: 2p_2 * x_2 5 = 0 = f_2(p,x)$
- Comparative statics of x_1^* with respect to p_1 ?
- First compute det $\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)$

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{pmatrix} = \begin{pmatrix} & & \\ & & \end{pmatrix}$$

• Then compute det
$$\left(\frac{\partial(f_1,...,f_s)}{\partial(x_1,...x_{i-1},p_k,x_{i+1}...,x_s)}\right)$$

 $\left(\begin{array}{cc} \frac{\partial f_1}{\partial p_1} & \frac{\partial f_1}{\partial x_2}\\ \frac{\partial f_2}{\partial p_1} & \frac{\partial f_2}{\partial x_2} \end{array}\right) = \left(\begin{array}{cc} \end{array}\right)$

• Finally,
$$\frac{\partial x_1}{\partial p_1} =$$

• Why did you compute det $\left(\frac{\partial f}{\partial x}\right)$ already?

5 Next Class

- Next class:
 - Envelope Theorem
 - Convexity and Concavity
 - Constrained Maximization
 - Envelope Theorem II

- Going toward:
 - Preferences
 - Utility Maximization (where we get to apply maximization techniques the first time)