Economics 101A (Lecture 7)

Stefano DellaVigna

September 17, 2009

Outline

- 1. Utility maximization Tricky Cases
- 2. Indirect Utility Function
- 3. Comparative Statics (Introduction)
- 4. Income Changes

1 Utility maximization – tricky cases

• First, re-solve CES utility function.

$$\max_{x_1, x_2} \left(\alpha x_1^{\rho} + \beta x_2^{\rho} \right)^{1/\rho}$$
s.t. $p_1 x_1 + p_2 x_2 - M = 0$

• Solution:

$$x_{1}^{*} = \frac{M}{p_{1} \left(1 + \left(\frac{\alpha}{\beta}\right)^{\frac{1}{\rho-1}} \left(\frac{p_{2}}{p_{1}}\right)^{\frac{\rho}{\rho-1}}\right)}$$

$$x_{2}^{*} = \frac{M}{p_{2} \left(1 + \left(\frac{\beta}{\alpha}\right)^{\frac{1}{\rho-1}} \left(\frac{p_{1}}{p_{2}}\right)^{\frac{\rho}{\rho-1}}\right)}$$

- Special case 1: $\rho \to 1^-$ (Perfect Substitutes)
 - $lim_{\rho\to 1^-}\frac{1}{\rho-1}=lim_{\rho\to 1^-}\frac{\rho}{\rho-1}=-\infty$ (here notice the convergence from the left)

- If
$$\frac{\alpha}{\beta}\frac{p_2}{p_1}>1$$
 (or $p_1/p_2),$

$$\left(\frac{\alpha}{\beta}\right)^{\frac{1}{\rho-1}} \left(\frac{p_2}{p_1}\right)^{\frac{\rho}{\rho-1}} \to 0$$

$$x_1^* \to M/p_1$$

- If
$$\frac{\alpha}{\beta}\frac{p_2}{p_1}<1$$
 (or $p_1/p_2>lpha/eta$),

$$\left(\frac{\alpha}{\beta}\right)^{\frac{1}{\rho-1}} \left(\frac{p_2}{p_1}\right)^{\frac{\rho}{\rho-1}} \to \infty$$

$$x_1^* \to 0$$

• Solution for Perfect Substitutes Case is

$$x_1^* \ = \ \begin{cases} 0 & \text{if} \ p_1/p_2 > \alpha/\beta \\ M/p_1 & \text{if} \ p_1/p_2 < \alpha/\beta \\ \text{any } x_1 \in [0, M/p_1] & \text{if} \ p_1/p_2 = \alpha/\beta \end{cases}$$

$$x_2^* \ = \ \begin{cases} M/p_2 & \text{if} \ p_1/p_2 > \alpha/\beta \\ 0 & \text{if} \ p_1/p_2 < \alpha/\beta \\ x_2 \text{ such that B.C. holds} & \text{if} \ p_1/p_2 = \alpha/\beta \end{cases}$$

ullet Case $p_1/p_2=lpha/eta$ has to be analyzed separately

 This is case in which budget line and indifference curves are parallel -> All points on budget line are tangent and hence optimal.

- Tricky Cases (ctd)
- 2. Solution does not satisfy $x_1^* > 0$ or $x_2^* > 0$. Example:

$$\max x_1 * (x_2 + 5)$$
s.t. $p_1x_1 + p_2x_2 = M$

• In this case consider corner conditions: what happens for $x_1^*=$ 0? And $x_2^*=$ 0?

- 3. Multiplicity of solutions.
 - \bullet Example 1: Perfect Substitutes with $p_1/p_2 = \alpha/\beta$

• Example 2: Non-convex preferences with two optima

2 Indirect utility function

- Nicholson, Ch. 4, pp. 124-127 (106-108, 9th)
- Define the indirect utility $v(\mathbf{p}, M) \equiv u(\mathbf{x}^*(\mathbf{p}, M))$, with \mathbf{p} vector of prices and \mathbf{x}^* vector of optimal solutions.
- $v(\mathbf{p}, M)$ is the utility at the optimum for prices \mathbf{p} and income M
- Some comparative statics: $\partial v(\mathbf{p}, M)/\partial M = ?$
- Hint: Use Envelope Theorem on Lagrangean function

• What is the sign of λ ?

•
$$\lambda = u'_{x_i}/p > 0$$

•
$$\partial v(\mathbf{p}, M)/\partial p_i = ?$$

• Properties:

- Indirect utility is always increasing in income ${\cal M}$
- Indirect utility is always decreasing in the price p_i

3 Comparative Statics (introduction)

- Nicholson, Ch. 5, pp. 141-151 (121-131, 9th)
- Utility maximization yields $x_i^* = x_i^*(p_1, p_2, M)$
- Quantity consumed as a function of income and price

• What happens to quantity consumed x_i^* as prices or income varies?

• Simple case: Equal increase in prices and income.

•
$$M' = tM$$
, $p'_1 = tp_1$, $p'_2 = tp_2$.

- Compare $x^*(tM, tp_1, tp_2)$ and $x^*(M, p_1, p_2)$.
- What happens?

• Write budget line: $tp_1x_1 + tp_2x_2 = tM$

ullet Demand is homogeneous of degree 0 in ${f p}$ and M:

$$x^*(tM, tp_1, tp_2) = t^0x^*(M, p_1, p_2) = x^*(M, p_1, p_2).$$

• Consider Cobb-Douglas Case:

$$x_1^* = \frac{\alpha}{\alpha + \beta} M/p_1, x_2^* = \frac{\beta}{\alpha + \beta} M/p_2$$

• What is $\partial x_1^*/\partial M$?

• What is $\partial x_1^*/\partial p_1$?

• What is $\partial x_1^*/\partial p_2$?

• General results?

4 Income changes

- Income increases from M to to M' > M.
- Budget line $(p_1x_1 + p_2x_2 = M)$ shifts out:

$$x_2 = \frac{M'}{p_2} - x_1 \frac{p_1}{p_2}$$

• New optimum?

ullet Engel curve: $x_i^*(M)$: demand for good i as function of income M holding fixed prices p_1,p_2

• Does x_i^* increase with M?

- Yes. Good i is normal

- No. Good i is inferior

5 Next Class

- More comparative statics:
 - Price Effects
 - Intuition
 - Slutzky Equation
- Then moving on to applications:
 - Labor Supply
 - Intertemporal choice
 - Economics of Altruism