# Economics 101A (Lecture 7) 

Stefano DellaVigna

September 17, 2009

## Outline

# 1. Utility maximization - Tricky Cases 

2. Indirect Utility Function
3. Comparative Statics (Introduction)
4. Income Changes

## 1 Utility maximization - tricky cases

- First, re-solve CES utility function.

$$
\begin{aligned}
& \max _{x_{1}, x_{2}}\left(\alpha x_{1}^{\rho}+\beta x_{2}^{\rho}\right)^{1 / \rho} \\
& \text { s.t. } p_{1} x_{1}+p_{2} x_{2}-M=0
\end{aligned}
$$

- Solution:

$$
\begin{aligned}
& x_{1}^{*}=\frac{M}{p_{1}\left(1+\left(\frac{\alpha}{\beta}\right)^{\frac{1}{\rho-1}}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\rho}{\rho-1}}\right)} \\
& x_{2}^{*}=\frac{M}{p_{2}\left(1+\left(\frac{\beta}{\alpha}\right)^{\frac{1}{\rho-1}}\left(\frac{p_{1}}{p_{2}}\right)^{\frac{\rho}{\rho-1}}\right)}
\end{aligned}
$$

- Special case 1: $\rho \rightarrow 1^{-}$(Perfect Substitutes)
$-\lim _{\rho \rightarrow 1^{-}} \frac{1}{\rho-1}=\lim _{\rho \rightarrow 1^{-}} \frac{\rho}{\rho-1}=-\infty$ (here notice the convergence from the left)

$$
\begin{aligned}
& - \text { If } \frac{\alpha p_{2}}{\beta}>1\left(\text { or } p_{1} / p_{2}<\alpha / \beta\right), \\
& \\
& \qquad\left(\frac{\alpha}{\beta}\right)^{\frac{1}{\rho-1}}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\rho}{\rho-1}} \rightarrow 0
\end{aligned}
$$

$$
x_{1}^{*} \rightarrow M / p_{1}
$$

$$
\text { - If } \frac{\alpha}{\beta} \frac{p_{2}}{p_{1}}<1\left(\text { or } p_{1} / p_{2}>\alpha / \beta\right) \text {. }
$$

$$
\begin{aligned}
\left(\frac{\alpha}{\beta}\right)^{\frac{1}{\rho-1}}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\rho}{\rho-1}} & \rightarrow \infty \\
x_{1}^{*} & \rightarrow 0
\end{aligned}
$$

- Solution for Perfect Substitutes Case is

$$
\begin{aligned}
& x_{1}^{*}=\left\{\begin{array}{ccc}
0 & \text { if } p_{1} / p_{2}>\alpha / \beta \\
M / p_{1} & \text { if } & p_{1} / p_{2}<\alpha / \beta \\
\text { any } x_{1} \in\left[0, M / p_{1}\right] & \text { if } & p_{1} / p_{2}=\alpha / \beta
\end{array}\right. \\
& x_{2}^{*}=\left\{\begin{array}{cl}
M / p_{2} & \text { if } p_{1} / p_{2}>\alpha / \beta \\
0 & \text { if } p_{1} / p_{2}<\alpha / \beta \\
x_{2} \text { such that B.C. holds } & \text { if } p_{1} / p_{2}=\alpha / \beta
\end{array}\right.
\end{aligned}
$$

- Case $p_{1} / p_{2}=\alpha / \beta$ has to be analyzed separately
- This is case in which budget line and indifference curves are parallel $->$ All points on budget line are tangent and hence optimal.
- Tricky Cases (ctd)

2. Solution does not satisfy $x_{1}^{*}>0$ or $x_{2}^{*}>0$. Example:

$$
\begin{aligned}
& \max x_{1} *\left(x_{2}+5\right) \\
& \text { s.t. } p_{1} x_{1}+p_{2} x_{2}=M
\end{aligned}
$$

- In this case consider corner conditions: what happens for $x_{1}^{*}=0$ ? And $x_{2}^{*}=0$ ?

3. Multiplicity of solutions.

- Example 1: Perfect Substitutes with $p_{1} / p_{2}=$ $\alpha / \beta$
- Example 2: Non-convex preferences with two optima


## 2 Indirect utility function

- Nicholson, Ch. 4, pp. 124-127 (106-108, 9th)
- Define the indirect utility $v(\mathbf{p}, M) \equiv u\left(\mathbf{x}^{*}(\mathbf{p}, M)\right)$, with $\mathbf{p}$ vector of prices and $\mathbf{x}^{*}$ vector of optimal solutions.
- $v(\mathbf{p}, M)$ is the utility at the optimum for prices $\mathbf{p}$ and income $M$
- Some comparative statics: $\partial v(\mathbf{p}, M) / \partial M=$ ?
- Hint: Use Envelope Theorem on Lagrangean function
- What is the sign of $\lambda$ ?
- $\lambda=u_{x_{i}}^{\prime} / p>0$
- $\partial v(\mathbf{p}, M) / \partial p_{i}=?$
- Properties:
- Indirect utility is always increasing in income $M$
- Indirect utility is always decreasing in the price $p_{i}$


## 3 Comparative Statics (introduction)

- Nicholson, Ch. 5, pp. 141-151 (121-131, 9th)
- Utility maximization yields $x_{i}^{*}=x_{i}^{*}\left(p_{1}, p_{2}, M\right)$
- Quantity consumed as a function of income and price
- What happens to quantity consumed $x_{i}^{*}$ as prices or income varies?
- Simple case: Equal increase in prices and income.
- $M^{\prime}=t M, p_{1}^{\prime}=t p_{1}, p_{2}^{\prime}=t p_{2}$.
- Compare $x^{*}\left(t M, t p_{1}, t p_{2}\right)$ and $x^{*}\left(M, p_{1}, p_{2}\right)$.
- What happens?
- Write budget line: $t p_{1} x_{1}+t p_{2} x_{2}=t M$
- Demand is homogeneous of degree 0 in $\mathbf{p}$ and $M$ :

$$
x^{*}\left(t M, t p_{1}, t p_{2}\right)=t^{0} x^{*}\left(M, p_{1}, p_{2}\right)=x^{*}\left(M, p_{1}, p_{2}\right)
$$

- Consider Cobb-Douglas Case:

$$
x_{1}^{*}=\frac{\alpha}{\alpha+\beta} M / p_{1}, x_{2}^{*}=\frac{\beta}{\alpha+\beta} M / p_{2}
$$

- What is $\partial x_{1}^{*} / \partial M$ ?
- What is $\partial x_{1}^{*} / \partial p_{1}$ ?
- What is $\partial x_{1}^{*} / \partial p_{2}$ ?
- General results?


## 4 Income changes

- Income increases from $M$ to to $M^{\prime}>M$.
- Budget line $\left(p_{1} x_{1}+p_{2} x_{2}=M\right)$ shifts out:

$$
x_{2}=\frac{M^{\prime}}{p_{2}}-x_{1} \frac{p_{1}}{p_{2}}
$$

- New optimum?
- Engel curve: $x_{i}^{*}(M)$ : demand for good $i$ as function of income $M$ holding fixed prices $p_{1}, p_{2}$
- Does $x_{i}^{*}$ increase with $M$ ?
- Yes. Good $i$ is normal
- No. Good $i$ is inferior


## 5 Next Class

- More comparative statics:
- Price Effects
- Intuition
- Slutzky Equation
- Then moving on to applications:
- Labor Supply
- Intertemporal choice
- Economics of Altruism

