Economics 101A (Lecture 9)

Stefano DellaVigna

September 24, 2009

Outline

- 1. Slutsky Equation II
- 2. Complements and substitutes
- 3. Do utility functions exist?

1 Slutsky Equation II

Slutsky Equation

$$\frac{\partial x_i^*(\mathbf{p}, M)}{\partial p_i} = \frac{\partial h_i(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_i}$$
$$-x_1^*(p_1, p_2, M) \frac{\partial x_i^*(\mathbf{p}, M)}{\partial M}$$

Important result! Allows decomposition into substitution and income effect

- Example 1 (ctd.): Cobb-Douglas. Apply Slutsky equation
- $x_i^* = \alpha M/p_i$
- $h_i^* =$

• Derivative of Hicksian demand with respect to price:

$$rac{\partial h_i\left(\mathbf{p},\overline{u}
ight)}{\partial p_i} =$$

- Rewrite h_i^* as function of m: $h_i(\mathbf{p}, v(\mathbf{p}, M))$
- Compute $v(\mathbf{p}, M) =$

• Substitution effect:

$$\frac{\partial h_i(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_i} =$$

• Income effect:

$$-x_i^*(p_1, p_2, M) \frac{\partial x_i^*(\mathbf{p}, M)}{\partial M} =$$

• Sum them up to get

$$\frac{\partial x_i^*(\mathbf{p}, M)}{\partial p_i} =$$

• It works!

2 Complements and substitutes

- Nicholson, Ch. 6, pp. 182-187 (161-166, 9th)
- How about if price of another good changes?
- Generalize Slutsky equation

• Slutsky Equation:

$$\frac{\partial x_i^*(\mathbf{p}, M)}{\partial p_j} = \frac{\partial h_i(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_j}$$
$$-x_j^*(p_1, p_2, M) \frac{\partial x_i^*(\mathbf{p}, M)}{\partial M}$$

Substitution effect

$$\frac{\partial h_i(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_j} > 0$$

for n=2 (two goods). Ambiguous for n>2.

• Income effect:

$$-x_j^*(p_1, p_2, M) \frac{\partial x_i^*(\mathbf{p}, M)}{\partial M}$$

- negative if good i is normal
- positive if good i is inferior

How do we define complements and substitutes?

Def. 1. Goods i and j are gross substitutes at price
 p and income M if

$$\frac{\partial x_i^*(\mathbf{p}, M)}{\partial p_i} > 0$$

• Def. 2. Goods i and j are **gross complements** at price ${\bf p}$ and income M if

$$\frac{\partial x_i^* \left(\mathbf{p}, M \right)}{\partial p_j} < 0$$

- Example 1 (ctd.): $x_1^* = \alpha M/p_1, x_2^* = \beta M/p_2.$
- Gross complements or gross substitutes? Neither!
- Notice: $\frac{\partial x_i^*(\mathbf{p}, M)}{\partial p_j}$ is usually different from $\frac{\partial x_j^*(\mathbf{p}, M)}{\partial p_i}$

- Better definition.
- Def. 3. Goods i and j are net substitutes at price
 p and income M if

$$\frac{\partial h_i^* (\mathbf{p}, v(\mathbf{p}, M))}{\partial p_j} = \frac{\partial h_j^* (\mathbf{p}, v(\mathbf{p}, M))}{\partial p_i} > 0$$

• Def. 4. Goods i and j are **net complements** at price ${\bf p}$ and income M if

$$\frac{\partial h_i^* (\mathbf{p}, v(\mathbf{p}, M))}{\partial p_j} = \frac{\partial h_j^* (\mathbf{p}, v(\mathbf{p}, M))}{\partial p_i} < 0$$

- Example 1 (ctd.): $h_1^* = \overline{u} \left(\frac{\alpha}{1-\alpha} \frac{p_2}{p_1} \right)^{1-\alpha}$
- Net complements or net substitutes? Net substitutes!

3 Do utility functions exist?

- Preferences and utilities are theoretical objects
- Many different ways to write them

- How do we tie them to the world?
- Use actual choices revealed preferences approach

•	Typical economists' approach. Compromise of:
	– realism
	simplicity
	Assume a class of utility functions (CES, Cobb-Douglas) with free parameters
•	Estimate the parameters using the data

4 Labor Supply

- Nicholson Ch. 16, pp. 573-581 (477-484, 9th)
- Labor supply decision: how much to work in a day.

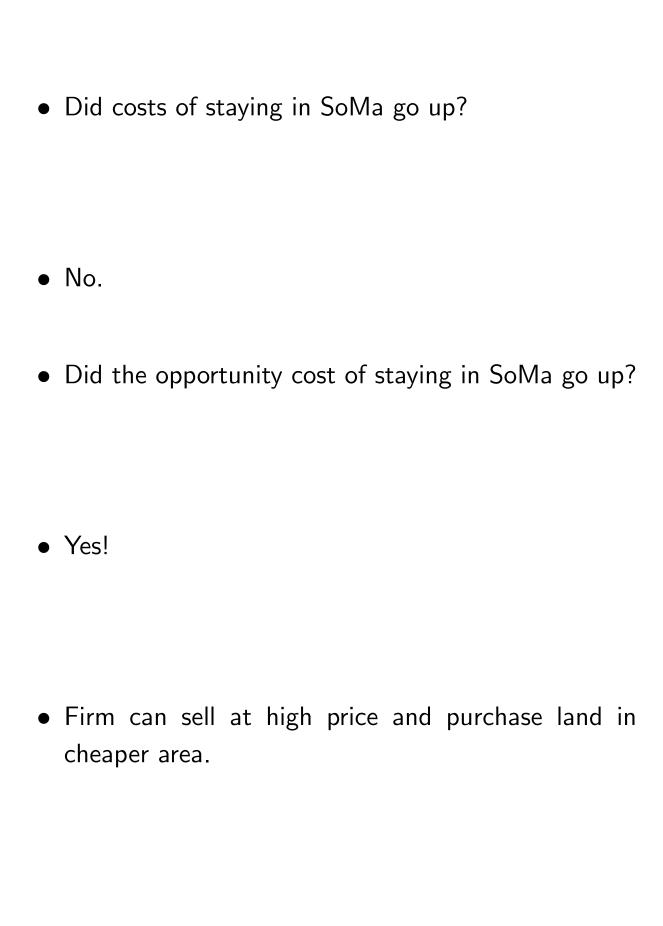
- ullet Goods: consumption good c, hours worked h
- ullet Price of good p, hourly wage w
- ullet Consumer spends 24-h=l hours in units of leisure

• Utilify function: u(c, l)

- Budget constraint?
- Income of consumer: M + wh = M + w(24 l)
- ullet Budget constraint: $pc \leq M + w(24-l)$ or $pc + wl \leq M + 24w$
- ullet Notice: leisure l is a consumption good with price w. Why?
- General category: **opportunity cost**
- Instead of enjoying one hour of TV, I could have worked one hour and gained wage w.
- ullet You should value the marginal hour of TV w!

•	Opportunity costs are very important!
•	Example 2. CostCo has a warehouse in SoMa
•	SoMa used to have low cost land, adequate for ware-houses
•	Price of land in SoMa triples in 10 years.
•	Should firm relocate the warehouse?

_



- Let's go back to labor supply
- Maximization problem is

$$\max u(c, l)$$

$$s.t. \ pc + wl \le M + 24w$$

- Standard problem (except for 24w)
- First order conditions

• Assume utility function Cobb-Douglas:

$$u(c,l) = c^{\alpha} l^{1-\alpha}$$

Solution is

$$c^* = \alpha \frac{M + 24w}{p}$$

$$l^* = (1 - \alpha) \left(24 + \frac{M}{w}\right)$$

- ullet Both c and l are normal goods
- ullet Unlike in standard Cobb-Douglas problems, c^* depends on price of other good w
- ullet Why? Agents are endowed with M AND 24 hours of l in this economy
- ullet Normally, agents are only endowed with M

5 Next Lectures

- Applications:
 - Labor Supply
 - Intertemporal Choice
 - Economics of Altruism