Economics 101A (Lecture 11)

Stefano DellaVigna

October 6, 2009

Outline

1. Application 3: Altruism and charitable donations II

2. Introduction to probability
3. Expected Utility
4. Insurance

1 Altruism and Charitable Donations II

- Wendy maximizes

$$
\begin{aligned}
& \max _{c_{M}, D} u\left(c_{W}\right)+\alpha u\left(M_{M}+D\right) \\
& \text { s.t. } c_{W} \leq M_{W}-D
\end{aligned}
$$

- Rewrite as:

$$
\max _{D} u\left(M_{W}-D\right)+\alpha u\left(M_{M}+D\right)
$$

- First order condition:

$$
-u^{\prime}\left(M_{W}-D^{*}\right)+\alpha u^{\prime}\left(M_{M}+D^{*}\right)=0
$$

- Second order conditions:

$$
u^{\prime \prime}\left(M_{W}-D^{*}\right)+\alpha u^{\prime \prime}\left(M_{M}+D^{*}\right)<0
$$

- Assume $\alpha=1$.
- Solution?

$$
\begin{aligned}
& -u^{\prime}\left(M_{W}-D\right)=u^{\prime}\left(M_{M}+D^{*}\right) \\
& -M_{W}-D^{*}=M_{M}+D^{*} \text { or } D^{*}=\left(M_{W}-M_{M}\right) / 2
\end{aligned}
$$

- Transfer money so as to equate incomes!
- Careful: $D<0$ (negative donation!) if $M_{M}>$ M_{W}
- Corrected maximization:

$$
\begin{aligned}
& \max _{D} u\left(M_{W}-D\right)+\alpha u\left(M_{M}+D\right) \\
& \text { s.t. } D \geq 0
\end{aligned}
$$

- Solution $(\alpha=1)$:

$$
D^{*}=\left\{\begin{array}{cc}
\left(M_{W}-M_{M}\right) / 2 & \text { if } M_{W}-M_{M}>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

- Assume interior solution. $\left(D^{*}>0\right)$
- Comparative statics 1 (altruism):

$$
\frac{\partial D^{*}}{\partial \alpha}=-\frac{u^{\prime}\left(M_{M}+D^{*}\right)}{u^{\prime \prime}\left(M_{W}-D^{*}\right)+\alpha u^{\prime \prime}\left(M_{M}+D^{*}\right)}>0
$$

- Comparative statics 2 (income of donor):

$$
\frac{\partial D^{*}}{\partial M_{W}}=-\frac{-u^{\prime \prime}\left(M_{W}+D^{*}\right)}{u^{\prime \prime}\left(M_{W}-D^{*}\right)+\alpha u^{\prime \prime}\left(M_{M}+D^{*}\right)}>0
$$

- Comparative statics 3 (income of recipient):

$$
\frac{\partial D^{*}}{\partial M_{M}}=-\frac{\alpha u^{\prime \prime}\left(M_{M}+D^{*}\right)}{u^{\prime \prime}\left(M_{W}-D^{*}\right)+\alpha u^{\prime \prime}\left(M_{M}+D^{*}\right)}<0
$$

- A quick look at the evidence
- From Andreoni (2002)

2 Introduction to Probability

- So far deterministic world:
- income given, known M
- interest rate known r
- But some variables are unknown at time of decision:
- future income M_{1} ?
- future interest rate r_{1} ?
- Generalize framework to allow for uncertainty
- Events that are truly unpredictable (weather)
- Event that are very hard to predict (future income)
- Probability is the language of uncertainty
- Example:
- Income M_{1} at $t=1$ depends on state of the economy
- Recession $\left(M_{1}=20\right)$, Slow growth ($M_{2}=25$), Boom ($M_{3}=30$)
- Three probabilities: p_{1}, p_{2}, p_{3}
- $p_{1}=P\left(M_{1}\right)=P($ recession $)$
- Properties:
$-0 \leq p_{i} \leq 1$
$-p_{1}+p_{2}+p_{3}=1$
- Mean income: $E M=\sum_{i=1}^{3} p_{i} M_{i}$
- If $\left(p_{1}, p_{2}, p_{3}\right)=(1 / 3,1 / 3,1 / 3)$,

$$
E M=\frac{1}{3} 20+\frac{1}{3} 25+\frac{1}{3} 30=\frac{75}{3}=25
$$

- Variance of income: $V(M)=\sum_{i=1}^{3} p_{i}\left(M_{i}-E M\right)^{2}$
- If $\left(p_{1}, p_{2}, p_{3}\right)=(1 / 3,1 / 3,1 / 3)$,

$$
\begin{aligned}
V(M) & =\frac{1}{3}(20-25)^{2}+\frac{1}{3}(25-25)^{2}+\frac{1}{3}(30-25)^{2} \\
& =\frac{1}{3} 5^{2}+\frac{1}{3} 5^{2}=2 / 3 * 25
\end{aligned}
$$

- Mean and variance if $\left(p_{1}, p_{2}, p_{3}\right)=(1 / 4,1 / 2,1 / 4)$?

3 Expected Utility

- Nicholson, Ch. 7, pp. 202-209 (Ch. 18, pp. 533541, 9th)
- Consumer at time 0 asks: what is utility in time 1 ?
- At $t=1$ consumer maximizes

$$
\begin{aligned}
& \max U\left(c^{1}\right) \\
& \text { s.t. } c_{i}^{1} \leq M_{i}^{1}+(1+r)\left(M^{0}-c^{0}\right)
\end{aligned}
$$

with $i=1,2,3$.

- What is utility at optimum at $t=1$ if $U^{\prime}>0$?
- Assume for now $M^{0}-c^{0}=0$
- Utility $U\left(M_{i}^{1}\right)$
- This is uncertain, depends on which i is realized!
- How do we evaluate future uncertain utility?
- Expected utility

$$
E U=\sum_{i=1}^{3} p_{i} U\left(M_{i}^{1}\right)
$$

- In example:

$$
E U=1 / 3 U(20)+1 / 3 U(25)+1 / 3 U(30)
$$

- Compare with $U(E C)=U(25)$.
- Agents prefer riskless outcome $E M$ to uncertain outcome M if

$$
\begin{aligned}
1 / 3 U(20)+1 / 3 U(25)+1 / 3 U(30) & <U(25) \text { or } \\
1 / 3 U(20)+1 / 3 U(30) & <2 / 3 U(25) \text { or } \\
1 / 2 U(20)+1 / 2 U(30) & <U(25)
\end{aligned}
$$

- Picture
- Depends on sign of $U^{\prime \prime}$, on concavity/convexity
- Three cases:
- $U^{\prime \prime}(x)=0$ for all x. (linearity of U)
* $U(x)=a+b x$
* $1 / 2 U(20)+1 / 2 U(30)=U(25)$
- $U^{\prime \prime}(x)<0$ for all x. (concavity of U) * $1 / 2 U(20)+1 / 2 U(30)<U(25)$
- $U^{\prime \prime}(x)>0$ for all x. (convexity of U)

$$
* 1 / 2 U(20)+1 / 2 U(30)>U(25)
$$

- If $U^{\prime \prime}(x)=0$ (linearity), consumer is indifferent to uncertainty
- If $U^{\prime \prime}(x)<0$ (concavity), consumer dislikes uncertainty
- If $U^{\prime \prime}(x)>0$ (convexity), consumer likes uncertainty
- Do consumers like uncertainty?
- Do you like uncertainty?
- Theorem. (Jensen's inequality) If a function $f(x)$ is concave, the following inequality holds:

$$
f(E x) \geq E f(x)
$$

where E indicates expectation. If f is strictly concave, we obtain

$$
f(E x)>E f(x)
$$

- Apply to utility function U.
- Individuals dislike uncertainty:

$$
U(E x) \geq E U(x)
$$

- Jensen's inequality then implies U concave ($U^{\prime \prime} \leq 0$)
- Relate to diminishing marginal utility of income

4 Insurance

- Nicholson, Ch. 7, pp. 216-221 (18, pp. 545-551, 9th) Notice: different treatment than in class
- Individual has:
- wealth w
- utility function u, with $u^{\prime}>0, u^{\prime \prime}<0$
- Probability p of accident with loss L
- Insurance offers coverage:
- premium $\$ q$ for each $\$ 1$ paid in case of accident
- units of coverage purchased α
- Individual maximization:

$$
\begin{aligned}
& \max _{\alpha}(1-p) u(w-q \alpha)+p u(w-q \alpha-L+\alpha) \\
& \text { s.t. } \alpha \geq 0
\end{aligned}
$$

- Assume $\alpha^{*} \geq 0$, check later
- First order conditions:

$$
\begin{aligned}
0= & -q(1-p) u^{\prime}(w-q \alpha) \\
& +(1-q) p u^{\prime}(w-q \alpha-L+\alpha)
\end{aligned}
$$

or

$$
\frac{u^{\prime}(w-q \alpha)}{u^{\prime}(w-q \alpha-L+\alpha)}=\frac{1-q}{q} \frac{p}{1-p}
$$

- Assume first $q=p$ (insurance is fair)
- Solution for $\alpha^{*}=$?
- $\alpha^{*}>0$, so we are ok!
- What if $q>p$ (insurance needs to cover operating costs)?
- Insurance will be only partial (if at all): $\alpha^{*}<L$
- Exercise: Check second order conditions!

5 Next Lectures

- Risk aversion
- Applications:
- Portfolio choice
- Consumption choice II

