Economics 101A (Lecture 17)

Stefano DellaVigna

October 27, 2009

Outline

1. Comparative Statics of Equilibrium

2. Elasticities
3. Response to Taxes
4. Producer Surplus
5. Consumer Surplus

1 Comparative statics of equilibrium

- Nicholson, Ch. 12, pp. 403-406 (Ch. 10, pp. 293295, 9th)
- Supply and Demand function of parameter α :

$$
\begin{aligned}
& -Y_{i}^{S}\left(p_{i}, w, r, \alpha\right) \\
& -X_{i}^{D}(\mathbf{p}, \mathbf{M}, \alpha)
\end{aligned}
$$

- How does α affect p^{*} and Y^{*} ?
- Comparative statics with respect to α
- Equilibrium:

$$
Y_{i}^{S}\left(p_{i}, w, r, \alpha\right)=X_{i}^{D}(\mathbf{p}, \mathbf{M}, \alpha)
$$

- Can write equilibrium as implicit function:

$$
Y_{i}^{S}\left(p_{i}, w, r, \alpha\right)-X_{i}^{D}(\mathbf{p}, \mathbf{M}, \alpha)=0
$$

- What is $d p^{*} / d \alpha$?
- Implicit function theorem:

$$
\frac{\partial p^{*}}{\partial \alpha}=-\frac{\frac{\partial Y^{S}}{\partial \alpha}-\frac{\partial X^{D}}{\partial \alpha}}{\frac{\partial Y^{S}}{\partial p}-\frac{\partial X^{D}}{\partial p}}
$$

- What is sign of denominator?
- Sign of $\partial p^{*} / \partial \alpha$ is negative of sign of numerator
- Examples:

1. Fad. Good becomes more fashionable: $\frac{\partial X^{D}}{\partial \alpha}>$ $0 \Longrightarrow \frac{\partial p^{*}}{\partial \alpha}>0$
2. Recession in Europe. Negative demand shock for US firms: $\frac{\partial X^{D}}{\partial \alpha}<0 \Longrightarrow \frac{\partial p^{*}}{\partial \alpha}<0$
3. Oil shock. Import prices increase: $\frac{\partial Y^{S}}{\partial \alpha}<0 \Longrightarrow$ $\frac{\partial p^{*}}{\partial \alpha}>0$
4. Computerization. Improvement in technology. $\frac{\partial Y^{S}}{\partial \alpha}>0 \Longrightarrow \frac{\partial p^{*}}{\partial \alpha}<0$

2 Elasticities

- Nicholson, Ch.1, pp. 26-27 (pp. 27-28, 9th)
- How do we interpret magnitudes of $\partial p^{*} / \partial \alpha$?
- Result depends on units of measure.
- Can we write $\partial p^{*} / \partial \alpha$ in a unit-free way?
- Yes! Use elasticities.
- Elasticity of x with respect to parameter p is

$$
\varepsilon_{x, p}=\frac{\partial x}{\partial p} \frac{p}{x}
$$

- Interpretation: Percent response in x to percent change in p :

$$
\begin{aligned}
\varepsilon_{x, p} & =\frac{\partial x}{\partial p} \frac{p}{x}=\lim _{d p \rightarrow 0} \frac{x(p+d p)-x(p)}{d p} \frac{p}{x}= \\
& =\lim _{d p \rightarrow 0} \frac{d x / x}{d p / p}
\end{aligned}
$$

where $d x \equiv x(p+d p)-x(p)$.

- Now, show

$$
\varepsilon_{x, p}=\frac{\partial \ln x}{\partial \ln p}
$$

- Notice: This makes sense only for $x>0$ and $p>0$
- Proof. Consider function

$$
x=f(p)
$$

- Rewrite as

$$
\ln (x)=\ln f(p)=\ln f\left(e^{\ln (p)}\right)
$$

- Define $\hat{x}=\ln (x)$ and $\hat{p}=\ln (p)$
- This implies

$$
\hat{x}=\ln f\left(e^{\hat{p}}\right)
$$

- Get

$$
\begin{aligned}
\frac{\partial \hat{x}}{\partial \hat{p}} & =\frac{\partial \ln x}{\partial \ln p}= \\
& =\frac{1}{f\left(e^{\hat{p}}\right)} \frac{\partial f\left(e^{\hat{p}}\right)}{\partial \hat{p}} e^{\hat{p}}=\frac{\partial x}{\partial p} \frac{p}{x}
\end{aligned}
$$

- Example with Cobb-Douglas utility function
- $U(x, y)=x^{\alpha} y^{1-\alpha}$ implies solutions

$$
x^{*}=\alpha \frac{M}{p_{x}}, y^{*}=(1-\alpha) \frac{M}{p_{y}}
$$

- Elasticity of demand with respect to own price $\varepsilon_{x, p_{x}}$:

$$
\varepsilon_{x, p_{x}}=\frac{\partial x^{*}}{\partial p_{x}} \frac{p_{x}}{x^{*}}=-\frac{\alpha M}{\left(p_{x}\right)^{2}} \frac{p_{x}}{\alpha \frac{M}{p_{x}}}=-1
$$

- Elasticity of demand with respect to other price $\varepsilon_{x, p_{y}}=$ 0
- Go back to problem above:

$$
\frac{\partial p^{*}}{\partial \alpha}=-\frac{\frac{\partial Y^{S}}{\partial \alpha}-\frac{\partial X^{D}}{\partial \alpha}}{\frac{\partial Y^{S}}{\partial p}-\frac{\partial X^{D}}{\partial p}}
$$

- Use elasticities to rewrite response of p to change in α :

$$
\frac{\partial p^{*}}{\partial \alpha} \frac{\alpha}{p}=-\frac{\left(\frac{\partial Y^{S}}{\partial \alpha}-\frac{\partial X^{D}}{\partial \alpha}\right) \frac{\alpha}{Y}}{\left(\frac{\partial Y^{S}}{\partial p}-\frac{\partial X^{D}}{\partial p}\right) \frac{p}{Y}}
$$

or (using fact that $X^{D *}=Y^{s *}$)

$$
\varepsilon_{p, \alpha}=-\frac{\varepsilon_{S, \alpha}-\varepsilon_{D, \alpha}}{\varepsilon_{S, p}-\varepsilon_{D, p}}
$$

- We are likely to know elasticities from empirical studies

3 Response to taxes

- Nicholson, Ch. 12, pp. 423-426 (Ch. 11, pp. 322323, 9th)
- Per-unit tax t
- Write price p_{i} as price including tax
- Supply: $Y_{i}^{S}\left(p_{i}-t, w, r\right)$
- Demand: $X_{i}^{D}(\mathbf{p}, \mathbf{M})$

$$
Y_{i}^{S}\left(p_{i}-t, w, r\right)-X_{i}^{D}(\mathbf{p}, \mathbf{M})=0
$$

- What is $d p^{*} / d t$?
- Comparative statics:

$$
\begin{aligned}
\frac{\partial p^{*}}{\partial t} & =-\frac{\frac{\partial Y^{S}}{\partial t}}{\frac{\partial Y^{S}}{\partial p}-\frac{\partial X^{D}}{\partial p}}= \\
& =-\frac{-\frac{\partial Y^{S}}{\partial p} \frac{p}{X}}{\left(\frac{\partial Y^{S}}{\partial p}-\frac{\partial X^{D}}{\partial p}\right) \frac{p}{X}}= \\
& =\frac{\varepsilon_{S, p}}{\varepsilon_{S, p}-\varepsilon_{D, p}}
\end{aligned}
$$

- How about price received by suppliers $p^{*}-t$?

$$
\begin{aligned}
\frac{\partial\left(p^{*}-t\right)}{\partial t} & =\frac{\frac{\partial Y^{S}}{\partial p}}{\frac{\partial Y^{S}}{\partial p}-\frac{\partial X^{D}}{\partial p}}-1= \\
& =\frac{\varepsilon_{D, p}}{\varepsilon_{S, p}-\varepsilon_{D, p}}
\end{aligned}
$$

- Inflexible Supply. (Capacity is fixed) Supply curve vertical $\left(\varepsilon_{S, p}=0\right)$
- Producers bear burden of tax
- Flexible Supply. (Constant Returns to Scale) Supply curve horizontal $\left(\varepsilon_{S, p} \rightarrow \infty\right)$
- Consumers bear burden of tax
- Inflexible demand. Demand curve vertical $\left(\varepsilon_{D, p}=\right.$ $0)$?
- Consumers bear burden
- General lesson: Least elastic side bears larger part of burden
- What happens with a subsidy $(t<0)$?
- What happens to quantity sold?
- Use demand curve:

$$
\frac{\partial X^{D *}}{\partial t}=\frac{\partial X^{D *}}{\partial p^{*}} \frac{\partial p^{*}}{\partial t}
$$

and use expression for $\partial p^{*} / \partial t$ above

4 Welfare: Producer Surplus

- Nicholson, Ch. 11, pp. 371-374 (Ch. 9, pp. 261263, 9th)
- Producer Surplus is easier to define:

$$
\pi\left(p, y_{0}\right)=p y_{0}-c\left(y_{0}\right)
$$

- Can give two graphical interpretations:
- Intepretation 1. Rewrite as

$$
\pi\left(p, y_{0}\right)=y_{0}\left[p-\frac{c\left(y_{0}\right)}{y_{0}}\right]
$$

- Profit equals rectangle of quantity times (p - Av. Cost)
- Intepretation 2. Remember:

$$
f(x)=f(0)+\int_{0}^{x} f_{x}^{\prime}(s) d s
$$

- Rewrite profit as

$$
\begin{aligned}
& {\left[p * 0+p \int_{0}^{y_{0}} 1 d y\right]-\left[c(0)+\int_{0}^{y_{0}} c_{y}^{\prime}(y) d y\right]=} \\
= & \int_{0}^{y_{0}}\left(p-c_{y}^{\prime}(y)\right) d y-c(0) .
\end{aligned}
$$

- Producer surplus is area between price and marginal cost (minus fixed cost)

5 Welfare: Consumer Surplus

- Nicholson, Ch. 5, pp. 165-169 (Ch. 5, pp. 145-149, 9th)
- Welfare effect of price change from p_{0} to p_{1}
- Proposed measure:

$$
e\left(p_{0}, u\right)-e\left(p_{1}, u\right)
$$

- Can rewrite expression above as

$$
\begin{aligned}
e\left(p_{0}, u\right)-e\left(p_{1}, u\right)= & \left(e(0, u)+\int_{0}^{p_{0}} \frac{\partial e(p, u)}{\partial p} d p\right)- \\
& -\left(e(0, u)+\int_{0}^{p_{1}} \frac{\partial e(p, u)}{\partial p} d p\right) \\
= & \int_{p_{1}}^{p_{0}} \frac{\partial e(p, u)}{\partial p} d p
\end{aligned}
$$

- What is $\frac{\partial e(p, u)}{\partial p}$?
- Remember envelope theorem...
- Result:

$$
\frac{\partial e(p, u)}{\partial p}=h(p, u)
$$

- Welfare mesure is integral of area to the side of Hicksian compensated demand
- Graphically,
- Example of welfare effects: Imposition of Tax - Welfare before tax
- Welfare after tax

6 Next Lecture

- Trade
- Market Equilibrium in the Long-Run
- Then: Market Power
- Monopoly
- Price Discrimination

