# Economics 101A (Lecture 21) 

Stefano DellaVigna

November 11, 2009

## Outline

## 1. Oligopoly: Cournot

2. Oligopoly: Bertrand

## 3. Second-price Auction

4. Auctions: eBay Evidence

## 1 Oligopoly: Cournot

- Nicholson, Ch. 14, pp. 524-530 (better than Ch. 14, pp. 418-419, 421-422, 9th)
- Back to oligopoly maximization problem
- Assume 2 firms, cost $c_{i}\left(y_{i}\right)=c y_{i}, i=1,2$
- Firms choose simultaneously quantity $y_{i}$
- Firm $i$ maximizes:

$$
\max _{y_{i}} p\left(y_{i}+y_{-i}\right) y_{i}-c y_{i} .
$$

- First order condition with respect to $y_{i}$ :

$$
p_{Y}^{\prime}\left(y_{i}^{*}+y_{-i}^{*}\right) y_{i}^{*}+p-c=0, i=1,2
$$

- Nash equilibrium:
- $y_{1}$ optimal given $y_{2}$;
- $y_{2}$ optimal given $y_{1}$.
- Solve equations:

$$
\begin{gathered}
p_{Y}^{\prime}\left(y_{1}^{*}+y_{2}^{*}\right) y_{1}^{*}+p-c=0 \text { and } \\
p_{Y}^{\prime}\left(y_{2}^{*}+y_{1}^{*}\right) y_{2}^{*}+p-c=0 .
\end{gathered}
$$

- Cournot -> Pricing above marginal cost
- Numerical example -> Problem set 5


## 2 Oligopoly: Bertrand

- Cournot oligopoly: firms choose quantities
- Bertrand oligopoly: firms first choose prices, and then produce quantity demanded by market
- Market demand function $Y(p)$
- 2 firms
- Profits:

$$
\pi_{i}\left(p_{i}, p_{-i}\right)=\left\{\begin{array}{cll}
\left(p_{i}-c\right) Y\left(p_{i}\right) & \text { if } & p_{i}<p_{-i} \\
\left(p_{i}-c\right) Y\left(p_{i}\right) / 2 & \text { if } & p_{i}=p_{-i} \\
0 & \text { if } & p_{i}>p_{-i}
\end{array}\right.
$$

- First show that $p_{1}=c=p_{2}$ is Nash Equilibrium
- Does any firm have a (strict) incentive to deviate?
- Check profits for Firm 1
- Symmetric argument for Firm 2
- Second, show that this equilibrium is unique.
- For each of the next 5 cases at least on firm has a profitable deviation
- Case 1. $p_{1}>p_{2}>c$
- Case 2. $p_{1}=p_{2}>c$
- Case 3. $p_{1}>c \geq p_{2}$
- Case 4. $c>p_{1} \geq p_{2}$
- Case 5. $p_{1}=c>p_{2}$
- Only Case 6 remains: $p_{1}=c=p_{2}$, which is Nash Equilibrium
- It is unique!
- Notice:
- To show that something is an equilibrium $->$ Show that there is *no* profitable deviation
- To show that something is *not* an equilibrium $->$ Show that there is *one* profitable deviation


# - Surprising result of Bertrand Competition 

- Marginal cost pricing
- Two firms are enough to guarantee perfect competition!
- Realistic? Price wars between PC makers


## 3 Second-price Auction

- Nicholson, Ch. 18, pp. 659-66 [Not in old book]
- Sealed-bid auction
- Highest bidder wins object
- Price paid is second highest price
- Two individuals: $I=2$
- Strategy $s_{i}$ is bid $b_{i}$
- Each individual knows value $v_{i}$
- Payoff for individual $i$ is

$$
u_{i}\left(b_{i}, b_{-i}\right)=\left\{\begin{array}{cll}
v_{i}-b_{-i} & \text { if } & b_{i}>b_{-i} \\
\left(v_{i}-b_{-i}\right) / 2 & \text { if } & b_{i}=b_{-i} \\
0 & \text { if } & b_{i}<b_{-i}
\end{array}\right.
$$

- Show: weakly dominant to set $b_{i}^{*}=v_{i}$
- To show:

$$
u_{i}\left(v_{i}, b_{-i}\right) \geq u_{i}\left(b_{i}, b_{-i}\right)
$$

for all $b_{i}$, for all $b_{-i}$, and for $i=1,2$.

1. Assume $b_{-i}>v_{i}$

- $u_{i}\left(v_{i}, b_{-i}\right)=0=u_{i}\left(b_{i}, b_{-i}\right)$ for any $b_{i}<b_{-i}$
- $u_{i}\left(b_{-i}, b_{-i}\right)=\left(v_{i}-b_{-i}\right) / 2<0$
- $u_{i}\left(b_{i}, b_{-i}\right)=\left(v_{i}-b_{-i}\right)<0$ for any $b_{i}>b_{-i}$

2. Assume now $b_{-i}=v_{i}$

## 3. Assume now $b_{-i}<v_{i}$

# 4 Auctions: Evidence from eBay 

- In second-price auction, optimal strategy is to bid one's own value
- Is this true?
- eBay has proxy system: If you have highest bid, you pay bid of second-highest bidder
- eBay is essentially a second-price auction
- Two deviations:

1. People bid multiple times - they should not in this theory
2. People may overbid

## An example: eBay Bidding for a Board Game

- Bidding environment with clear boundary for rational willingness to pay ("buy-it-now price").
- Empirical environment unaffected by common-value arguments (presumably bidding for private use; in addition "buy-it-now" price).
- Still non-negligible amount (\$100-\$200).
$\rightarrow$ Is there evidence of overbidding?
$\rightarrow$ If so, can we detect determinants of overbidding?


## The Object



## The Data

- Cashflow 101: board game with the purpose of finance/accounting education.
- Retail price : \$195 plus shipping cost (\$10.75) from manufacturer (www.richdad.com).
- Two ways to purchase Cashflow 101 on eBay
- Auction (quasi-second price proxy bidding)
- Buy-it-now
- Hand-collected data of all auctions and Buy-itnow transactions of Cashflow 101 on eBay from 2/19/2004 to 9/6/2004.


## Sample

- Listings
- 206 by individuals (187 auctions only, 19 auctions with buy-it-now option)
- 493 by two retailers (only buy-it-now)
- Remove non-US\$, terminated, unsold items and items without simultaneous professional buy-it-now listing. $\rightarrow$ 169 auctions
- Buy-it-now offers of the two retailers
- Continuously present for all but six days. (Often individual buy-itnow offers present as well; they are often lower.)
- $100 \%$ and $99.9 \%$ positive feedback scores.
- Same prices $\$ 129.95$ until 07/31/2004; \$139.95 since 08/01/2004.
- Shipping cost $\$ 9.95$; other retailer $\$ 10.95$.
- New items (with bonus tapes/video).


## Listing Example (02/12/2004)

| Rich Dad's Cashflow Quadrant, Rich dad ... © | \$12.50 | 4 | 1 d 00 h 14 m |
| :---: | :---: | :---: | :---: |
| Rich Dad's Cashflow Quadrant by Robert T. ... | \$9.00 | 9 | 1d 00h 43m |
| Real Estate Investment Cashflow Software \$\$\$! ®(V) | \$10.49 | 2 | 1 d 04 h 36 m |
| CASHFLOW(8) 101202 Robert Kivosaki Best Pak \$ @(V) | \$207.96 | FBuy/ How | 1d 06 h 47 m |
| TRY IT TODAY, WITH ABSOLUTELY NO RISK, |  |  |  |
| CASHFLOW@ 101 Robert Kivosaki Plus Bonuses! P(V) | \$129.95 | $=$ Buy H Now | 1d08h 02m |
| Your satisfation is GUARANTEED, $100 \%$ \$ back |  |  |  |
| MLNT Cashflow 101 *Robert Kiyosaki Game NR! ®(V) | \$140.00 | 13 | 1d 08h 04m |
| It's easy to be rich. Brand New. Still sealed |  |  |  |
| cashflow Hard Money Funding 101 real estate ®® | \$14.99 | FBuy HNow | 1d 09h 28 m |
| BRANDNEW RICHDAD CASHFLOW FOR KIDS EGAME B | \$20.00 | 1 | 1d 13 h 54 m |
| CASHFLOW@101 Robert Kiyosaki Plus Bonuses! ®() | \$129.95 | $=$ Buy HNow | 1d 14h 17 m |
| Your satisfaction is GUARANTEED, $100 \%$ b back |  |  |  |
| CASHFLOW@101202 Robert Kiyosaki Best Pak \$ ©® | \$207.96 | $=$ Buy/ How | 1d 15h 47 m |

## Listing Example - Magnified



## Bidding history of an item



## Hypotheses

Given the information on the listing website:

- (H1) An auction should never end at a price above the concurrently available purchase price.
- (H2) Mentioning of higher outside prices should not affect bidding behavior.

Figure 1. Starting Price (startprice)
$\rightarrow 45 \%$ below $\$ 20$; mean $=\$ 46$; SD $=43.88$
$\rightarrow$ only 6 auctions with first bid (not price) above buy-it-now


Figure 2. Final Price (finalprice)
$\rightarrow 41 \%$ are above "buy-it-now" (mean \$132; SD 16.83)


Figure 4. Total Price (incl. shipping cost)
$\rightarrow 51 \%$ are above "buy-it-now" plus its shipping cost (mean=\$144.20; SD=15.00)


## 5 Next lecture

- Dynamic Games
- Stackelberg duopoly

