Economics 101A (Lecture 12)

Stefano DellaVigna

March 3, 2009

Outline

- 1. Time Consistency
- 2. Time Inconsistency
- 3. Health Club Attendance

1 Time consistency

- Intertemporal choice
- Three periods, t = 0, t = 1, and t = 2

- At each period *i*, agents:
 - have income $M_i' = M_i + \text{savings/debts}$ from previous period
 - choose consumption c_i ;
 - can save/borrow $M'_i c_i$
 - no borrowing in last period: at $t = 2 M'_2 = c_2$

• Utility function at t = 0 $u(c_0, c_1, c_2) = U(c_0) + \frac{1}{1+\delta}U(c_1) + \frac{1}{(1+\delta)^2}U(c_2)$

• Utility function at t = 1

$$u(c_1, c_2) = U(c_1) + \frac{1}{1+\delta}U(c_2)$$

• Utility function at t = 2

$$u(c_2) = U(c_2)$$

• U' > 0, U'' < 0

• Question: Do preferences of agent in period 0 agree with preferences of agent in period 1?

• Period 1.

• Budget constraint at t = 1:

$$c_1 + \frac{1}{1+r}c_2 \le M_1' + \frac{1}{1+r}M_2$$

• Maximization problem:

$$\max U(c_1) + \frac{1}{1+\delta}U(c_2)$$

s.t. $c_1 + \frac{1}{1+r}c_2 \le M'_1 + \frac{1}{1+r}M_2$

- First order conditions:
- Ratio of f.o.c.s:

$$\frac{U'(c_1)}{U'(c_2)} = \frac{1+r}{1+\delta}$$

- Back to **period 0**.
- Agent at time 0 can commit to consumption at time
 1 as function of uncertain income M₁.
- Anticipated budget constraint at t = 1:

$$c_1 + \frac{1}{1+r}c_2 \le M_1' + \frac{1}{1+r}M_2$$

• Maximization problem:

$$\max U(c_0) + \frac{1}{1+\delta}U(c_1) + \frac{1}{(1+\delta)^2}EU(c_2)$$

s.t. $c_1 + \frac{1}{1+r}c_2 \le M'_1 + \frac{1}{1+r}M_2$

- First order conditions:
- Ratio of f.o.c.s:

$$\frac{U'(c_1)}{U'(c_2)} = \frac{1+r}{1+\delta}$$

- The two conditions coincide!
- **Time consistency.** Plans for future coincide with future actions.
- To see why, rewrite utility function $u(c_0, c_1, c_2)$: $U(c_0) + \frac{1}{1+\delta}U(c_1) + \frac{1}{(1+\delta)^2}EU(c_2)$ $= U(c_0) + \frac{1}{1+\delta}\left[U(c_1) + \frac{1}{1+\delta}EU(c_2)\right]$
- Expression in brackets coincides with utility at t = 1
- Is time consistency right?
 - addictive products (alcohol, drugs);
 - good actions (exercising, helping friends);
 - immediate gratification (shopping, credit card borrowing)

2 Time Inconsistency

- Alternative specification (Akerlof, 1991; Laibson, 1997; O'Donoghue and Rabin, 1999)
- Utility at time t is $u(c_t, c_{t+1}, c_{t+2})$:

$$u(c_t) + \frac{\beta}{1+\delta}u(c_{t+1}) + \frac{\beta}{(1+\delta)^2}u(c_{t+2}) + \dots$$

• Discount factor is

$$1, \frac{\beta}{1+\delta}, \frac{\beta}{(1+\delta)^2}, \frac{\beta}{(1+\delta)^3}, \dots$$

instead of

$$1, rac{1}{1+\delta}, rac{1}{(1+\delta)^2}, rac{1}{(1+\delta)^3}, ...$$

- What is the difference?
- Immediate gratification: $\beta < 1$

- Back to our problem: **Period 1**.
- Maximization problem:

$$\max U(c_1) + \frac{\beta}{1+\delta}U(c_2)$$

s.t. $c_1 + \frac{1}{1+r}c_2 \le M'_1 + \frac{1}{1+r}M_2$

- First order conditions:
- Ratio of f.o.c.s:

$$\frac{U'(c_1^*)}{U'(c_2^*)} = \beta \frac{1+r}{1+\delta}$$

- Now, **period 0** with commitment.
- Maximization problem:

$$\max U(c_0) + \frac{\beta}{1+\delta} U(c_1) + \frac{\beta}{(1+\delta)^2} U(c_2)$$

s.t. $c_1 + \frac{1}{1+r} c_2 \le M'_1 + \frac{1}{1+r} M_2$

- First order conditions:
- Ratio of f.o.c.s:

$$\frac{U'(c_1^{*,c})}{U'(c_2^{*,c})} = \frac{1+r}{1+\delta}$$

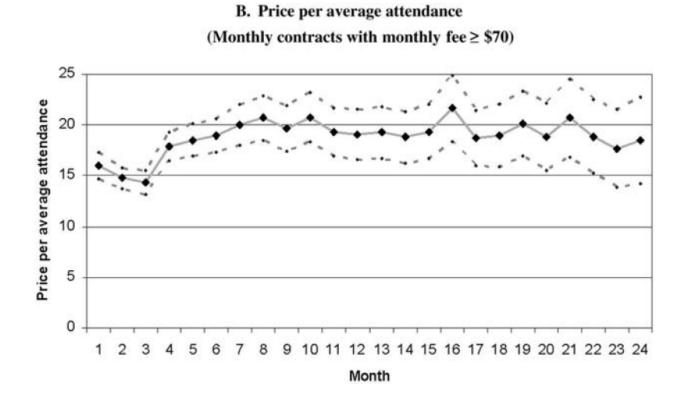
- The two conditions differ!
- Time inconsistency: $c_1^{\ast,c} < c_1^{\ast}$ and $c_2^{\ast,c} > c_2^{\ast}$
- The agent allows him/herself too much immediate consumption and saves too little

- Ok, we agree. but should we study this as economists?
- YES!
 - One trillion dollars in credit card debt;
 - Most debt is in teaser rates;
 - Two thirds of Americans are overwight or obese;
 - \$10bn health-club industry

- Is this testable?
 - In the laboratory?
 - In the field?

3 Health Club Attendance

- Health club industry study (DellaVigna and Malmendier, *American Economic Review*, 2006)
- 3 health clubs
- Data on attendance from swiping cards


- Choice of contracts:
 - Monthly contract with average price of \$75
 - 10-visit pass for \$100

• Consider users that choose monthly contract. Attendance?

	Sample: No subsidy, all clubs		
	Average price	Average attendance	Average price
	per month	per month	per average attendance
	(1)	(2)	(3)
	Users initially enrolled with a monthly contract		
Month 1	55.23	3.45	16.01
	(0.80)	(0.13)	(0.66)
Month 2	N = 829	N = 829	N = 829
	80.65	5.46	14.76
	(0.45)	(0.19)	(0.52)
Month 3	N = 758	N = 758	N = 758
	70.18	4.89	14.34
	(1.05)	(0.18)	(0.58)
Month 4	N = 753	N = 753	N = 753
	81.79	4.57	17.89
	(0.26)	(0.19)	(0.75)
Month 5	N = 728	N = 728	N = 728
	81.93	4.42	18.53
	(0.25)	(0.19)	(0.80)
Month 6	N = 701	N = 701	N = 701
	81.94	4.32	18.95
	(0.29)	(0.19)	(0.84)
Months 1 to 6	N = 607	N = 607	N = 607
	75.26	4.36	17.27
	(0.27)	(0.14)	(0.54)
	N = 866	N = 866	N = 866
	Users initially enrolled with an annual contract, who joined at least 14 months before the end of sample period		
Year 1	$ \begin{array}{r} 66.32 \\ (0.37) \\ N = 145 \end{array} $	4.36 (0.36) N = 145	15.22 (1.25) N = 145

TABLE 3—PRICE PER AVERAGE ATTENDANCE AT ENROLLMENT

- Attend on average 4.8 times per month
- Pay on average over \$17

- Average delay of 2.2 months (\$185) between last attendance and contract termination
- Over membership, user could have saved \$700 by paying per visit

- Health club attendance:
 - immediate cost \boldsymbol{c}
 - delayed benefit \boldsymbol{b}
- At sign-up (attend tomorrow):

$$NB^{t} = -\frac{\beta}{1+\delta}c + \frac{\beta}{(1+\delta)^{2}}b$$

• Plan to attend if $NB^t > 0$

$$c < rac{1}{(1+\delta)}b$$

• Once moment to attend comes:

$$NB = -c + \frac{\beta}{(1+\delta)}b$$

• Attend if
$$NB > 0$$

$$c < rac{eta}{(1+\delta)}b$$

• Interpretations?

• Users are buying a commitment device

- User underestimate their future self-control problems:
 - They overestimate future attendance
 - They delay cancellation

4 Next Lecture

- Expected Utility
- Insurance
- Portfolio Choice
- Then start Profit Maximization