Economics 101A (Lecture 14)

Stefano DellaVigna

March 10, 2009

Outline

- 1. Mid-Term Feedback
- 2. Risk Aversion and Lottery
- 3. Measures of Risk Aversion
- 4. Production: Introduction
- 5. Production Function

1 Mid-Term Feedback

• Thanks for the feedback!

2 Risk aversion

• Risk aversion:

- individuals dislike uncertainty

– u concave, $u^{\prime\prime}<0$

- Implications?
 - purchase of insurance (possible accident)

investment in risky asset (risky investment)

- choice over time (future income uncertain)

Theorem. (Jensen's inequality) If a function f(x) is concave, the following inequality holds:

 $f\left(Ex\right) \geq Ef\left(x\right)$

where ${\cal E}$ indicates expectation. If f is strictly concave, we obtain

$$f(Ex) > Ef(x)$$

- Apply to utility function *U*.
- Individuals dislike uncertainty:

$$U(Ex) \ge EU(x)$$

- Jensen's inequality then implies U concave $(U'' \leq 0)$
- Relate to diminishing marginal utility of income

• Experiment — Are you risk-averse?

3 Measures of Risk Aversion

- Nicholson, Ch. 7, pp. 209-213 (Ch. 18, pp. 541– 545, 9th)
- How risk averse is an individual?

• Two measures:

– Absolute Risk Aversion r_A :

$$r_A = -\frac{u''(x)}{u'(x)}$$

- Relative Risk Aversion r_R :

$$r_R = -\frac{u''(x)}{u'(x)}x$$

• Examples in the Problem Set

4 Production: Introduction

• Second half of the economy. Production

- Example. Ford and the Minivan (Petrin, 2002):
 - Ford had idea: "Mini/Max" (early '70s)
 - Did Ford produce it?
 - No!
 - Ford was worried of cannibalizing station wagon sector
 - Chrysler introduces Dodge Caravan (1984)
 - Chrysler: \$1.5bn profits (by 1987)!

• Why need separate treatment?

• Perhaps firms maximize utility...

- ...we can be more precise:
 - Competition
 - Institutional structure

5 Production Function

- Nicholson, Ch. 9, pp. 295-301; 306-311 (Ch. 7, pp. 183–190; 195–200, 9th)
- Production function: $y = f(\mathbf{z})$. Function $f: \mathbb{R}^n_+ \to \mathbb{R}_+$
- Inputs $\mathbf{z} = (z_1, z_2, ..., z_n)$: labor, capital, land, human capital
- Output y: Minivan, Intel Pentium III, mangoes (Philippines)
- Properties of f:
 - no free lunches: f(0) = 0
 - positive marginal productivity: $f'_i(\mathbf{z}) > 0$
 - decreasing marginal productivity: $f_{i,i}''(\mathbf{z}) < 0$

- Isoquants $Q(y) = \{\mathbf{x} | f(\mathbf{x}) = y\}$
- Set of inputs \mathbf{z} required to produce quantity y
- Special case. Two inputs:

–
$$z_1 = L$$
 (labor)

 $-z_2 = K$ (capital)

- Isoquant: f(L, K) y = 0
- Slope of isoquant dK/dL = MRTS

• Convex production function if convex isoquants

• Reasonable: combine two technologies and do better!

• Mathematically, $d^2K/d^2L =$

6 Next Lecture

- Two-Step Cost Minimization
- Solve an Example
- Cases in which s.o.c. are not satisfied
- Start Profit Maximization