Economics 101A (Lecture 14)

Stefano DellaVigna

March 10, 2009

Outline

1. Mid-Term Feedback

2. Risk Aversion and Lottery
3. Measures of Risk Aversion
4. Production: Introduction
5. Production Function

1 Mid-Term Feedback

- Thanks for the feedback!

2 Risk aversion

- Risk aversion:
- individuals dislike uncertainty
- u concave, $u^{\prime \prime}<0$
- Implications?
- purchase of insurance (possible accident)
- investment in risky asset (risky investment)
- choice over time (future income uncertain)

Theorem. (Jensen's inequality) If a function $f(x)$ is concave, the following inequality holds:

$$
f(E x) \geq E f(x)
$$

where E indicates expectation. If f is strictly concave, we obtain

$$
f(E x)>E f(x)
$$

- Apply to utility function U.
- Individuals dislike uncertainty:

$$
U(E x) \geq E U(x)
$$

- Jensen's inequality then implies U concave $\left(U^{\prime \prime} \leq 0\right)$
- Relate to diminishing marginal utility of income
- Experiment - Are you risk-averse?

3 Measures of Risk Aversion

- Nicholson, Ch. 7, pp. 209-213 (Ch. 18, pp. 541545, 9th)
- How risk averse is an individual?
- Two measures:
- Absolute Risk Aversion r_{A} :

$$
r_{A}=-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)}
$$

- Relative Risk Aversion r_{R} :

$$
r_{R}=-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)} x
$$

- Examples in the Problem Set

4 Production: Introduction

- Second half of the economy. Production
- Example. Ford and the Minivan (Petrin, 2002):
- Ford had idea: "Mini/Max" (early '70s)
- Did Ford produce it?
- No!
- Ford was worried of cannibalizing station wagon sector
- Chrysler introduces Dodge Caravan (1984)
- Chrysler: $\$ 1.5$ bn profits (by 1987)!
- Why need separate treatment?
- Perhaps firms maximize utility...
- ...we can be more precise:
- Competition
- Institutional structure

5 Production Function

- Nicholson, Ch. 9, pp. 295-301; 306-311 (Ch. 7, pp. 183-190; 195-200, 9th)
- Production function: $y=f(\mathbf{z})$. Function $f: R_{+}^{n} \rightarrow$ R_{+}
- Inputs $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$: labor, capital, land, human capital
- Output y: Minivan, Intel Pentium III, mangoes (Philippines)
- Properties of f :
- no free lunches: $f(0)=0$
- positive marginal productivity: $f_{i}^{\prime}(\mathbf{z})>0$
- decreasing marginal productivity: $f_{i, i}^{\prime \prime}(\mathbf{z})<0$
- Isoquants $Q(y)=\{\mathbf{x} \mid f(\mathbf{x})=y\}$
- Set of inputs \mathbf{z} required to produce quantity y
- Special case. Two inputs:
- $z_{1}=L$ (labor)
$-z_{2}=K$ (capital)
- Isoquant: $f(L, K)-y=0$
- Slope of isoquant $d K / d L=M R T S$

- Convex production function if convex isoquants

- Reasonable: combine two technologies and do better!
- Mathematically, $d^{2} K / d^{2} L=$

6 Next Lecture

- Two-Step Cost Minimization
- Solve an Example
- Cases in which s.o.c. are not satisfied
- Start Profit Maximization

