Economics 101A (Lecture 6)

Stefano DellaVigna

February 5, 2009

Outline

1. From Preferences to Utility (and viceversa)

2. Common Utility Functions
3. Utility maximization

1 From preferences to utility

- Nicholson, Ch. 3
- Economists like to use utility functions $u: X \rightarrow R$
- $u(x)$ is 'liking' of good x
- $u(a)>u(b)$ means: I prefer a to b.
- Def. Utility function u represents preferences \succeq if, for all x and y in $X, x \succeq y$ if and only if $u(x) \geq$ $u(y)$.
- Theorem. If preference relation \succeq is rational and continuous, there exists a continuous utility function $u: X \rightarrow R$ that represents it.
- [Skip proof]
- Example:

$$
\left(x_{1}, x_{2}\right) \succeq\left(y_{1}, y_{2}\right) \text { iff } x_{1}+x_{2} \geq y_{1}+y_{2}
$$

- Draw:
- Utility function that represents it: $u(x)=x_{1}+x_{2}$
- But... Utility function representing \succeq is not unique
- Take $3 u(x)$ or $\exp (u(x))$
- $u(a)>u(b) \Longleftrightarrow \exp (u(a))>\exp (u(b))$
- If $u(x)$ represents preferences \succeq and f is a strictly increasing function, then $f(u(x))$ represents \succeq as well.
- If preferences are represented from a utility function, are they rational?
- completeness
- transitivity
- Indifference curves: $u\left(x_{1}, x_{2}\right)=\bar{u}$
- They are just implicit functions! $u\left(x_{1}, x_{2}\right)-\bar{u}=0$

$$
\frac{d x_{2}}{d x_{1}}=-\frac{U_{x_{1}}^{\prime}}{U_{x_{2}}^{\prime}}=M R S
$$

- Indifference curves for:
- monotonic preferences;
- strictly monotonic preferences;
- convex preferences

2 Common utility functions

- Nicholson, Ch. 3, pp. 100-104 (82-86, 9th)

1. Cobb-Douglas preferences: $u\left(x_{1}, x_{2}\right)=x_{1}^{\alpha} x_{2}^{1-\alpha}$

- $M R S=-\alpha x_{1}^{a-1} x_{2}^{1-\alpha} /(1-a) x_{1}^{\alpha} x_{2}^{-\alpha}=\frac{\alpha}{1-\alpha} \frac{x_{2}}{x_{1}}$

2. Perfect substitutes: $u\left(x_{1}, x_{2}\right)=\alpha x_{1}+\beta x_{2}$

- $M R S=-\alpha / \beta$

3. Perfect complements: $u\left(x_{1}, x_{2}\right)=\min \left(\alpha x_{1}, \beta x_{2}\right)$

- $M R S$ discontinuous at $x_{2}=\frac{\alpha}{\beta} x_{1}$

4. Constant Elasticity of Substitution: $u\left(x_{1}, x_{2}\right)=$ $\left(\alpha x_{1}^{\rho}+\beta x_{2}^{\rho}\right)^{1 / \rho}$

- $M R S=-\frac{\alpha}{\beta}\left(\frac{x_{1}}{x_{2}}\right)^{\rho-1}$
- if $\rho=1$, then...
- if $\rho=0$, then \ldots
- if $\rho \rightarrow-\infty$, then...

3 Utility Maximization

- Nicholson, Ch. 4, pp. 114-124 (94-105, 9th)
- $X=R_{+}^{2}(2$ goods $)$
- Consumers: choose bundle $x=\left(x_{1}, x_{2}\right)$ in X which yields highest utility.
- Constraint: income $=M$
- Price of good $1=p_{1}$, price of good $2=p_{2}$
- Bundle x is feasible if $p_{1} x_{1}+p_{2} x_{2} \leq M$
- Consumer maximizes

$$
\begin{aligned}
& \max _{x_{1}, x_{2}} u\left(x_{1}, x_{2}\right) \\
& \text { s.t. } p_{1} x_{1}+p_{2} x_{2} \leq M \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

- Maximization subject to inequality. How do we solve that?
- Trick: u strictly increasing in at least one dimension. (\succeq strictly monotonic)
- Budget constraint always satisfied with equality
- Ignore temporarily $x_{1} \geq 0, x_{2} \geq 0$ and check afterwards that they are satisfied for x_{1}^{*} and x_{2}^{*}.

- Problem becomes

$$
\begin{aligned}
& \max _{x_{1}, x_{2}} u\left(x_{1}, x_{2}\right) \\
& \text { s.t. } p_{1} x_{1}+p_{2} x_{2}-M=0
\end{aligned}
$$

- $L\left(x_{1}, x_{2}\right)=u\left(x_{1}, x_{2}\right)-\lambda\left(p_{1} x_{1}+p_{2} x_{2}=M\right)$
- F.o.c.s:

$$
\begin{aligned}
u_{x_{i}}^{\prime}-\lambda p_{i} & =0 \text { for } i=1,2 \\
p_{1} x_{1}+p_{2} x_{2}-M & =0
\end{aligned}
$$

- Moving the two terms across and dividing, we get:

$$
M R S=-\frac{u_{x_{1}}^{\prime}}{u_{x_{2}}^{\prime}}=-\frac{p_{1}}{p_{2}}
$$

- Graphical interpretation.
- Second order conditions:

$$
H=\left(\begin{array}{ccc}
0 & -p_{1} & -p_{2} \\
-p_{1} & u_{x_{1}}^{\prime \prime}, x_{1} & u_{x_{1}}^{\prime \prime}, x_{2} \\
-p_{2} & u_{x_{2}, x_{1}}^{\prime \prime} & u_{x_{2}, x_{2}}^{\prime \prime}
\end{array}\right)
$$

$$
\begin{aligned}
|H|= & p_{1}\left(-p_{1} u_{x_{2}, x_{2}}^{\prime \prime}+p_{2} u_{x_{2}, x_{1}}^{\prime \prime}\right) \\
& -p_{2}\left(-p_{1} u_{x_{1}, x_{2}}^{\prime \prime}+p_{2} u_{x_{1}, x_{1}}^{\prime \prime}\right) \\
= & -p_{1}^{2} u_{x_{2}, x_{2}}^{\prime \prime}+2 p_{1} p_{2} u_{x_{1}, x_{2}}^{\prime \prime}-p_{2}^{2} u_{x_{1}, x_{1}}^{\prime \prime}
\end{aligned}
$$

- Notice: $u_{x_{2}, x_{2}}^{\prime \prime}<0$ and $u_{x_{1}, x_{1}}^{\prime \prime}<0$ usually satisfied (but check it!).
- Condition $u_{x_{1}, x_{2}}^{\prime \prime}>0$ is then sufficient
- Example with CES utility function.

$$
\begin{aligned}
& \max _{x_{1}, x_{2}}\left(\alpha x_{1}^{\rho}+\beta x_{2}^{\rho}\right)^{1 / \rho} \\
& \text { s.t. } p_{1} x_{1}+p_{2} x_{2}-M=0
\end{aligned}
$$

- Lagrangean $=$
- F.o.c.:
- Solution:

$$
\begin{aligned}
& x_{1}^{*}=\frac{M}{p_{1}\left(1+\left(\frac{\alpha}{\beta}\right)^{\frac{1}{\rho-1}}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\rho}{\rho-1}}\right)} \\
& x_{2}^{*}=\frac{M}{p_{2}\left(1+\left(\frac{\beta}{\alpha}\right)^{\frac{1}{\rho-1}}\left(\frac{p_{1}}{p_{2}}\right)^{\frac{\rho}{\rho-1}}\right)}
\end{aligned}
$$

- Special case 1: $\rho=0$ (Cobb-Douglas)

$$
\begin{aligned}
x_{1}^{*} & =\frac{\alpha}{\alpha+\beta} \frac{M}{p_{1}} \\
x_{2}^{*} & =\frac{\beta}{\alpha+\beta} \frac{M}{p_{2}}
\end{aligned}
$$

- Special case 1: $\rho \rightarrow 1$ (Perfect Substitutes)

$$
\begin{aligned}
& x_{1}^{*}=\left\{\begin{array}{ccc}
0 & \text { if } & p_{1} / p_{2} \geq \alpha / \beta \\
M / p_{1} & \text { if } & p_{1} / p_{2}<\alpha / \beta
\end{array}\right. \\
& x_{2}^{*}=\left\{\begin{array}{cll}
M / p_{2} & \text { if } & p_{1} / p_{2} \geq \alpha / \beta \\
0 & \text { if } & p_{1} / p_{2}<\alpha / \beta
\end{array}\right.
\end{aligned}
$$

- Special case 1: $\rho \rightarrow-\infty$ (Perfect Complements)

$$
x_{1}^{*}=\frac{M}{p_{1}+p_{2}}=x_{2}^{*}
$$

- Parameter ρ indicates substition pattern between goods:
- $\rho>0$-> Goods are (net) substitutes
- $\rho<0->$ Goods are (net) complements

4 Next Class

- Utility Maximization - Tricky Cases
- Indirect Utility Function
- Comparative Statics:
- with respect to price
- with respect to income

