Economics 101A (Lecture 7)

Stefano DellaVigna

February 10, 2009

Outline

1. Utility maximization II

2. Utility maximization - Tricky Cases
3. Indirect Utility Function
4. Comparative Statics (Introduction)

1 Utility Maximization

- Maximization problem becomes

$$
\begin{aligned}
& \max _{x_{1}, x_{2}} u\left(x_{1}, x_{2}\right) \\
& \text { s.t. } p_{1} x_{1}+p_{2} x_{2}-M=0
\end{aligned}
$$

- $L\left(x_{1}, x_{2}\right)=u\left(x_{1}, x_{2}\right)-\lambda\left(p_{1} x_{1}+p_{2} x_{2}-M\right)$
- F.o.c.s:

$$
\begin{aligned}
u_{x_{i}}^{\prime}-\lambda p_{i} & =0 \text { for } i=1,2 \\
p_{1} x_{1}+p_{2} x_{2}-M & =0
\end{aligned}
$$

- Moving the two terms across and dividing, we get:

$$
M R S=-\frac{u_{x_{1}}^{\prime}}{u_{x_{2}}^{\prime}}=-\frac{p_{1}}{p_{2}}
$$

- Graphical interpretation.
- Second order conditions:

$$
H=\left(\begin{array}{ccc}
0 & -p_{1} & -p_{2} \\
-p_{1} & u_{x_{1}}^{\prime \prime}, x_{1} & u_{x_{1}}^{\prime \prime}, x_{2} \\
-p_{2} & u_{x_{2}, x_{1}}^{\prime \prime} & u_{x_{2}, x_{2}}^{\prime \prime}
\end{array}\right)
$$

$$
\begin{aligned}
|H|= & p_{1}\left(-p_{1} u_{x_{2}, x_{2}}^{\prime \prime}+p_{2} u_{x_{2}, x_{1}}^{\prime \prime}\right) \\
& -p_{2}\left(-p_{1} u_{x_{1}, x_{2}}^{\prime \prime}+p_{2} u_{x_{1}, x_{1}}^{\prime \prime}\right) \\
= & -p_{1}^{2} u_{x_{2}, x_{2}}^{\prime \prime}+2 p_{1} p_{2} u_{x_{1}, x_{2}}^{\prime \prime}-p_{2}^{2} u_{x_{1}, x_{1}}^{\prime \prime}
\end{aligned}
$$

- Notice: $u_{x_{2}, x_{2}}^{\prime \prime}<0$ and $u_{x_{1}, x_{1}}^{\prime \prime}<0$ usually satisfied (but check it!).
- Condition $u_{x_{1}, x_{2}}^{\prime \prime}>0$ is then sufficient
- Example with CES utility function.

$$
\begin{aligned}
& \max _{x_{1}, x_{2}}\left(\alpha x_{1}^{\rho}+\beta x_{2}^{\rho}\right)^{1 / \rho} \\
& \text { s.t. } p_{1} x_{1}+p_{2} x_{2}-M=0
\end{aligned}
$$

- Lagrangean $=$
- F.o.c.:
- Solution:

$$
\begin{aligned}
& x_{1}^{*}=\frac{M}{p_{1}\left(1+\left(\frac{\alpha}{\beta}\right)^{\frac{1}{\rho-1}}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\rho}{\rho-1}}\right)} \\
& x_{2}^{*}=\frac{M}{p_{2}\left(1+\left(\frac{\beta}{\alpha}\right)^{\frac{1}{\rho-1}}\left(\frac{p_{1}}{p_{2}}\right)^{\frac{\rho}{\rho-1}}\right)}
\end{aligned}
$$

- Special case 1: $\rho=0$ (Cobb-Douglas)

$$
\begin{aligned}
& x_{1}^{*}=\frac{\alpha}{\alpha+\beta} \frac{M}{p_{1}} \\
& x_{2}^{*}=\frac{\beta}{\alpha+\beta} \frac{M}{p_{2}}
\end{aligned}
$$

- Special case 2: $\rho \rightarrow 1$ (Perfect Substitutes)

$$
\begin{aligned}
& x_{1}^{*}=\left\{\begin{array}{ccc}
0 & \text { if } & p_{1} / p_{2} \geq \alpha / \beta \\
M / p_{1} & \text { if } & p_{1} / p_{2}<\alpha / \beta
\end{array}\right. \\
& x_{2}^{*}=\left\{\begin{array}{cll}
M / p_{2} & \text { if } & p_{1} / p_{2} \geq \alpha / \beta \\
0 & \text { if } & p_{1} / p_{2}<\alpha / \beta
\end{array}\right.
\end{aligned}
$$

- Special case 3: $\rho \rightarrow-\infty$ (Perfect Complements)

$$
x_{1}^{*}=\frac{M}{p_{1}+p_{2}}=x_{2}^{*}
$$

- Parameter ρ indicates substition pattern between goods:
- $\rho>0$-> Goods are (net) substitutes
- $\rho<0->$ Goods are (net) complements

2 Utility maximization - tricky cases

1. Non-convex preferences. Example:
2. Example with CES utility function.

$$
\begin{aligned}
& \max _{x_{1}, x_{2}}\left(\alpha x_{1}^{\rho}+\beta x_{2}^{\rho}\right)^{1 / \rho} \\
& \text { s.t. } p_{1} x_{1}+p_{2} x_{2}-M=0
\end{aligned}
$$

- With $\rho>1$ the interior solution is a minimum!
- Draw indifference curves for $\rho=1$ (boundary case) and $\rho=2$
- Can also check using second order conditions

2. Solution does not satisfy $x_{1}^{*}>0$ or $x_{2}^{*}>0$. Example:

$$
\begin{aligned}
& \max x_{1} *\left(x_{2}+5\right) \\
& \text { s.t. } p_{1} x_{1}+p_{2} x_{2}=M
\end{aligned}
$$

- In this case consider corner conditions: what happens for $x_{1}^{*}=0$? And $x_{2}^{*}=0$?

3. Multiplicity of solutions. Example:

- Convex preferences that are not strictly convex

3 Indirect utility function

- Nicholson, Ch. 4, pp. 124-127 (106-108, 9th)
- Define the indirect utility $v(\mathbf{p}, M) \equiv u\left(\mathbf{x}^{*}(\mathbf{p}, M)\right)$, with \mathbf{p} vector of prices and \mathbf{x}^{*} vector of optimal solutions.
- $v(\mathbf{p}, M)$ is the utility at the optimimum for prices \mathbf{p} and income M
- Some comparative statics: $\partial v(\mathbf{p}, M) / \partial M=$?
- Hint: Use Envelope Theorem on Lagrangean function
- What is the sign of λ ?
- $\lambda=u_{x_{i}}^{\prime} / p>0$
- $\partial v(\mathbf{p}, M) / \partial p_{i}=?$
- Properties:
- Indirect utility is always increasing in income M
- Indirect utility is always decreasing in the price p_{i}

4 Comparative Statics (introduction)

- Nicholson, Ch. 5, pp. 141-151 (121-131, 9th)
- Utility maximization yields $x_{i}^{*}=x_{i}^{*}\left(p_{1}, p_{2}, M\right)$
- Quantity consumed as a function of income and price
- What happens to quantity consumed x_{i}^{*} as prices or income varies?
- Simple case: Equal increase in prices and income.
- $M^{\prime}=t M, p_{1}^{\prime}=t p_{1}, p_{2}^{\prime}=t p_{2}$.
- Compare $x^{*}\left(t M, t p_{1}, t p_{2}\right)$ and $x^{*}\left(M, p_{1}, p_{2}\right)$.
- What happens?
- Write budget line: $t p_{1} x_{1}+t p_{2} x_{2}=t M$
- Demand is homogeneous of degree 0 in \mathbf{p} and M :

$$
x^{*}\left(t M, t p_{1}, t p_{2}\right)=t^{0} x^{*}\left(M, p_{1}, p_{2}\right)=x^{*}\left(M, p_{1}, p_{2}\right)
$$

- Consider Cobb-Douglas Case:

$$
x_{1}^{*}=\frac{\alpha}{\alpha+\beta} M / p_{1}, x_{2}^{*}=\frac{\beta}{\alpha+\beta} M / p_{2}
$$

- What is $\partial x_{1}^{*} / \partial M$?
- What is $\partial x_{1}^{*} / \partial p_{1}$?
- What is $\partial x_{1}^{*} / \partial p_{2}$?
- General results?

5 Next Class

- More comparative statics:
- Price Effects
- Intuition
- Slutzky Equation
- Then moving on to applications:
- Labor Supply
- Intertemporal choice
- Economics of Altruism

