# Economics 101A (Lecture 20)

Stefano DellaVigna

April 7, 2009

#### Outline

- 1. Profit Maximization: Monopoly
- 2. Price Discrimination
- 3. Oligopoly?

## 1 Profit Maximization: Monopoly

- Nicholson, Ch. 11, pp. 358-365 (Ch. 9, pp. 248–255, 9th)
- Nicholson, Ch. 14, pp. 491-499 (Ch. 13, pp. 385–393, 9th)
- Perfect competition. Firms small
- ullet Monopoly. One, large firm. Firm sets price p to maximize profits.
- What does it mean to set prices?
- Firm chooses p, demand given by y = D(p)
- (OR: firm sets quantity y. Price  $p(y) = D^{-1}(y)$ )

- Write maximization with respect to y
- Firm maximizes profits, that is, revenue minus costs:

$$\max_{y} p(y) y - c(y)$$

• Notice  $p(y) = D^{-1}(y)$ 

• First order condition:

$$p'(y)y + p(y) - c'_y(y) = 0$$

or

$$\frac{p(y) - c'_y(y)}{p} = -p'(y)\frac{y}{p} = -\frac{1}{\varepsilon_{y,p}}$$

- Compare with f.o.c. in perfect competition
- Check s.o.c.

- Elasticity of demand determines markup:
  - very elastic demand  $\rightarrow$  low mark-up
  - relatively inelastic demand → higher mark-up

- Graphically,  $y^*$  is where marginal revenue (p'(y)y + p(y)) equals marginal cost  $(c'_y(y))$
- ullet Find p on demand function

- Example.
- ullet Linear inverse demand function p=a-by
- Linear costs: C(y) = cy, with c > 0
- Maximization:

$$\max_{y} (a - by) y - cy$$

• Solution:

$$y^*(a,b,c) = \frac{a-c}{2b}$$

and

$$p^*(a, b, c) = a - b \frac{a - c}{2b} = \frac{a + c}{2}$$

- S.O.C.
- Figure

- Comparative statics:
  - Change in marginal cost  $\boldsymbol{c}$

 ${\color{red}\mathsf{-}}$  Shift in demand curve a

Monopoly profits

• Case 1. High profits

• Case 2. No profits

- Welfare consequences of monopoly
  - Too little production
  - Too high prices

• Graphical analysis

#### 2 Price Discrimination

- Nicholson, Ch. 14, pp. 503-509 (Ch. 13, pp. 397–404, 9th)
- Restriction of contract space:
  - So far, one price for all consumers. But:
  - Can sell at different prices to differing consumers (first degree or perfect price discrimination).

Self-selection: Prices as function of quantity purchased, equal across people (second degree price discrimination).

 Segmented markets: equal per-unit prices across units (third degree price discrimination).

### 2.1 Perfect price discimination

- Monopolist decides price and quantity consumer-byconsumer
- What does it charge? Graphically,

- Welfare:
  - gain in efficiency;
  - all the surplus goes to firm

#### 2.2 Self-selection

- Perfect price discrimination not legal
- Cannot charge different prices for same quantity to A and B
- Partial Solution:
  - offer different quantities of goods at different prices;
  - allow consumers to choose quantity desired

| • Examples (very important!):                                       |
|---------------------------------------------------------------------|
| <ul> <li>bundling of goods (xeroxing machines and toner)</li> </ul> |
|                                                                     |
|                                                                     |
| <ul><li>quantity discounts</li></ul>                                |
|                                                                     |
|                                                                     |
| <ul><li>two-part tariffs (cell phones)</li></ul>                    |
|                                                                     |

| <ul><li>Examp</li></ul> | le: |
|-------------------------|-----|
|-------------------------|-----|

- Consumer A has value \$1 for up to 100 photocopies per month
- Consumer B has value \$.50 for up to 1,000 photocopies per month

- Firm maximizes profits by selling (for  $\varepsilon$  small):
  - 100 photocopies for \$100- $\varepsilon$
  - 1,000 photocopies for \$500- $\varepsilon$

• Problem if resale!

### 2.3 Segmented markets

- Firm now separates markets
- Within market, charges constant per-unit price

- Example:
  - cost function TC(y) = cy.
  - Market A: inverse demand dunction  $p_{A}\left(y\right)$  or
  - Market B: inverse dunction  $p_B(y)$

• Profit maximization problem:

$$\max_{y_A,y_B} p_A\left(y_A\right) y_A + p_B\left(y_B\right) y_B - c\left(y_A + y_B\right)$$

• First order conditions:

• Elasticity interpretation

• Firm charges more to markets with lower elasticity

- Examples:
  - student discounts

- prices of goods across countries:
  - \* airlines (US and Europe)
  - \* books (US and UK)
  - \* cars (Europe)
  - \* drugs (US vs. Canada vs. Africa)

• As markets integrate (Internet), less possible to do the latter.

## 3 Oligopoly?

- Extremes:
  - Perfect competition
  - Monopoly
- ullet Oligopoly if there are n (two, five...) firms

- Examples:
  - soft drinks: Coke, Pepsi;
  - cellular phones: Sprint, AT&T, Cingular,...
  - car dealers

• Firm *i* maximizes:

$$\max_{y_i} p\left(y_i + y_{-i}\right) y_i - c\left(y_i\right)$$
 where  $y_{-i} = \sum_{j \neq i} y_j.$ 

• First order condition with respect to  $y_i$ :

$$p'_{Y}(y_{i}+y_{-i})y_{i}+p-c'_{Y}(y_{i})=0.$$

- ullet Problem: what is the value of  $y_{-i}$ ?
  - simultaneous determination?
  - can firms -i observe  $y_i$ ?
- Need to study strategic interaction

## 4 Next Lecture

- Game theory
- Back to oligopoly:
  - Cournot
  - Bertrand