Economics 101A (Lecture 25)

Stefano DellaVigna

April 28, 2009

Outline

1. Walrasian Equilibrium II

2. Example
3. Existence and Welfare Theorems
4. Asymmetric Information: Introduction

1 Walrasian Equilibrium

- Walrasian Equilibrium. $\left(\left(x_{1}^{1 *}, x_{2}^{1 *}\right),\left(x_{1}^{2 *}, x_{2}^{2 *}\right), p_{1}^{*}, p_{2}^{*}\right)$ is a Walrasian Equilibrium if:
- Each consumer maximizes utility subject to budget constraint:

$$
\left(x_{1}^{i *}, x_{2}^{i *}\right)=\arg \max _{x_{1}^{i}, x_{2}^{i}} u_{i}\left(\left(x_{1}^{i}, x_{2}^{i}\right)\right.
$$

s.t. $p_{1}^{*} x_{1}^{i}+p_{2}^{*} x_{2}^{i} \leq p_{1}^{*} \omega_{1}^{i}+p_{2}^{*} \omega_{2}^{i}$

- All markets clear:

$$
x_{j}^{1 *}+x_{j}^{2 *} \leq \omega_{j}^{1}+\omega_{j}^{2} \text { for all } j
$$

- Offer curve for consumer 1 :

$$
\left(x_{1}^{1 *}\left(p_{1}, p_{2},\left(\omega_{1}, \omega_{2}\right)\right), x_{2}^{1 *}\left(p_{1}, p_{2},\left(\omega_{1}, \omega_{2}\right)\right)\right)
$$

- Offer curve is set of points that maximize utility as function of prices p_{1} and p_{2}.
- Then find offer curve for consumer 2 :

$$
\left(x_{1}^{2 *}\left(p_{1}, p_{2},\left(\omega_{1}, \omega_{2}\right)\right), x_{2}^{2 *}\left(p_{1}, p_{2},\left(\omega_{1}, \omega_{2}\right)\right)\right)
$$

- Figure
- Step 2. Find intersection(s) of two offer curves
- Walrasian Equilibrium is intersection of the two offer curves!
- Both individuals maximize utility given prices
- Total quantity demanded equals total endowment
- Relate Walrasian Equilibrium to barter equilbrium.
- Walrasian Equilibrium is a subset of barter equilibrium:
- Does WE satisfy Individual Rationality condition?
- Does WE satisfy the Pareto Efficiency condition?
- Walrasian Equilibrium therefore picks one (or more) point(s) on contract curve.

2 Example

- Consumer 1 has Leontieff preferences:

$$
u\left(x_{1}, x_{2}\right)=\min \left(x_{1}^{1}, x_{2}^{1}\right)
$$

- Bundle demanded by consumer 1 :

$$
\begin{aligned}
x_{1}^{1 *} & =x_{2}^{1 *}=x^{1 *}=\frac{p_{1} \omega_{1}^{1}+p_{2} \omega_{2}^{1}}{p_{1}+p_{2}}= \\
& =\frac{\omega_{1}^{1}+\left(p_{2} / p_{1}\right) \omega_{2}^{1}}{1+\left(p_{2} / p_{1}\right)}
\end{aligned}
$$

- Graphically
- Comparative statics:
- increase in ω
- increase in p_{2} / p_{1} :

$$
\begin{aligned}
\frac{d x_{1}^{1 *}}{d p_{2} / p_{1}} & =\frac{-\left(\omega_{2}^{1}\left(1+\left(p_{2} / p_{1}\right)\right)\right.}{\left(1+\left(p_{2} / p_{1}\right) \omega_{2}^{1}\right)} \\
& =\frac{\omega_{2}^{1}-\omega_{1}^{1}}{\left(1+\left(p_{2}\right)\right)^{2}}= \\
& =
\end{aligned}
$$

- Effect depends on income effect through endowments:
* A lot of good $2->$ increase in price of good 2 makes richer
* Little good $2->$ increase in price of good 2 makes poorer
- Notice: Only ratio of prices matters (general feature)
- Consumer 2 has Cobb-Douglas preferences:

$$
u\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}\right)^{.5}\left(x_{2}^{2}\right)^{.5}
$$

- Demands of consumer 2 :

$$
x_{1}^{2 *}=\frac{.5\left(p_{1} \omega_{1}^{1}+p_{2} \omega_{2}^{1}\right)}{p_{1}}=.5\left(\omega_{1}^{1}+\frac{p_{2}}{p_{1}} \omega_{2}^{1}\right)
$$

and

$$
x_{2}^{2 *}=\frac{.5\left(p_{1} \omega_{1}^{1}+p_{2} \omega_{2}^{1}\right)}{p_{2}}=.5\left(\frac{p_{1}}{p_{2}} \omega_{1}^{1}+\omega_{2}^{1}\right)
$$

- Comparative statics:
- increase in $\omega->$ Increase in final consumption
- increase in $p_{2} / p_{1}->$ Unambiguous increase in $x_{1}^{2 *}$ and decrease in $x_{2}^{2 *}$
- Impose Walrasian equilibrium in market 1 :

$$
x_{1}^{1 *}+x_{1}^{2 *}=\omega_{1}^{1}+\omega_{1}^{2}
$$

This implies

$$
\frac{\omega_{1}^{1}+\left(p_{2} / p_{1}\right) \omega_{2}^{1}}{1+\left(p_{2} / p_{1}\right)}+.5\left(\omega_{1}^{1}+\frac{p_{2}}{p_{1}} \omega_{2}^{1}\right)=\omega_{1}^{1}+\omega_{1}^{2}
$$

or
$\frac{.5-.5\left(p_{2} / p_{1}\right)}{1+\left(p_{2} / p_{1}\right)} \omega_{1}^{1}+\frac{.5\left(p_{2} / p_{1}\right)+.5\left(p_{2} / p_{1}\right)^{2}-1}{1+\left(p_{2} / p_{1}\right)} \omega_{2}^{1}=0$
or

$$
\left(\omega_{1}^{1}-2 \omega_{2}^{1}\right)+\left(\omega_{1}^{1}+\omega_{2}^{1}\right)\left(p_{2} / p_{1}\right)+\omega_{2}^{1}\left(p_{2} / p_{1}\right)^{2}=0
$$

- Solution for p_{2} / p_{1} :

$$
\frac{p_{2}}{p_{1}}=\frac{-\left(\omega_{1}^{1}-2 \omega_{2}^{1}\right)+\sqrt{\begin{array}{c}
\left(\omega_{1}^{1}+\omega_{2}^{1}\right)^{2} \\
-4\left(\omega_{1}^{1}-2 \omega_{2}^{1}\right) \omega_{2}^{1}
\end{array}}}{2\left(\omega_{1}^{1}-2 \omega_{2}^{1}\right)}
$$

- Some complicated solution!
- Problem set has solution that is much easier to compute (and interpret)

3 Existence and Welfare Theorems

- Does Walrasian Equilibrium always exist? In general, yes, as long as preference convex
- Is Walrasian Equilibrium always unique? Not necessarily
- Is Walrasian Equilibrium efficient? Yes.
- First Fundamental Welfare Theorem. All Walrasian Equilibria are on Contract Curve (and therefore are Pareto Efficient).
- Figure
- Second Fundamental Welfare theorem. Given convex preferences, for every Pareto efficient allocation $\left(\left(x_{1}^{1}, x_{1}^{1}\right),\left(x_{1}^{2}, x_{2}^{2}\right)\right)$ there exists some endowment $\left(\omega_{1}, \omega_{2}\right)$ such that $\left(\left(x_{1}^{1}, x_{1}^{1}\right),\left(x_{1}^{2}, x_{2}^{2}\right)\right)$ is a Walrasian Equilibrium for endowment $\left(\omega_{1}, \omega_{2}\right)$.
- Figure
- Significance of these results:
- First Theorem: Smithian Invisible Hand. Market leads to an allocation that is Pareto Efficient.
- BUT: problems with externalities and public good
- BUT: what about distribution?
- Second Theorem: Can redistribute endowments to achieve any efficient outcome as a WE.
- But redistribution is hard to implement, and distortive.

4 Asymmetric Information: Introduction

- Nicholson, Ch. 18, pp. 627-632 [NOT in 9th Ed.]
- Common economic relationship
- Contract between two parties:
- Principal
- Agent
- Two parties have asymmetric information
- Principal offers a contract to the agent
- Agent chooses an action
- Action of agent (or his type) is not observed by principle
- Example 1: Manager and worker
- Manager employs worker and offers wage
- Worker exerts effort (not observed)
- Manager pays worker as function of output
- Example 2: Car Insurance
- Car insurance company offers insurance contract
- Driver chooses quality of driving (not observed)
- Insurance company pays for accidents
- Example 3: Shareholders and CEO
- Shareholders choose compensation for CEO
- CEO puts effort
- CEO paid as function of stock price
- In all of these cases (and many more!), common structure
- Principal would like to observe effort (of worker, of CEO, of driver)
- Unfortunately, this is not observable
- Only a related, noisy proxy is observable: output, accident, success
- Contract offered by principal is function of this proxy
- This means that occasionally an agent that put a lot of effort but has bad luck is 'punished'
- Also, agents that shirked may instead be compensated
- These principle-agent problems are called hidden action or moral hazard
- Second category (next lecture): hidden type or adverse selection
- Example 1: Manager and worker
- Manager employs worker and offers wage
- Worker can be hard-working or lazy
- Example 2: Car Insurance
- Car insurance company offers insurance contract
- Drivers ex ante can be careful or careless
- Example 3: Shareholders and CEO
- Shareholders choose compensation for CEO
- CEO is high-quality or thief
- Problem is similar (action is not observed), but with a twist
- Hidden action: principal can convince agent to exert high effort with the appropriate incentives
- Hidden type: agent's behavior is not affected by incentives, but by her type
- Different task for principal:
- Hidden action: Principal wants to incentivize agent to work hard
- Hidden type: Principal wants to make sure to recruit 'good' agent, not 'bad' one
- Two look similar, but analysis is different
- Start from Hidden Action

5 Next lecture

- Asymmetric Information
- Moral Hazard

