Economics 101A (Lecture 25)

Stefano DellaVigna

April 28, 2009

Outline

- 1. Walrasian Equilibrium II
- 2. Example
- 3. Existence and Welfare Theorems
- 4. Asymmetric Information: Introduction

1 Walrasian Equilibrium

• Walrasian Equilibrium. $((x_1^{1*}, x_2^{1*}), (x_1^{2*}, x_2^{2*}), p_1^*, p_2^*)$ is a Walrasian Equilibrium if:

 Each consumer maximizes utility subject to budget constraint:

$$egin{array}{rll} (x_1^{i*}, x_2^{i*}) &=& rg\max_{x_1^i, x_2^i} u_i\left((x_1^i, x_2^i)
ight) \ s.t. \; p_1^* x_1^i + p_2^* x_2^i &\leq& p_1^* \omega_1^i + p_2^* \omega_2^i \end{array}$$

- All markets clear:

$$x_j^{1*} + x_j^{2*} \le \omega_j^1 + \omega_j^2$$
 for all j .

- Offer curve for consumer 1:
 (x₁^{1*} (p₁, p₂, (ω₁, ω₂)), x₂^{1*} (p₁, p₂, (ω₁, ω₂)))
- Offer curve is set of points that maximize utility as function of prices p₁ and p₂.

- Then find offer curve for consumer 2: $(x_1^{2*}(p_1, p_2, (\omega_1, \omega_2)), x_2^{2*}(p_1, p_2, (\omega_1, \omega_2)))$
- Figure

- *Step 2.* Find intersection(s) of two offer curves
- Walrasian Equilibrium is intersection of the two offer curves!
 - Both individuals maximize utility given prices
 - Total quantity demanded equals total endowment

• Relate Walrasian Equilibrium to barter equilbrium.

- Walrasian Equilibrium is a subset of barter equilibrium:
 - Does WE satisfy Individual Rationality condition?

- Does WE satisfy the Pareto Efficiency condition?

• Walrasian Equilibrium therefore picks one (or more) point(s) on contract curve.

2 Example

• Consumer 1 has Leontieff preferences:

$$u(x_{1,}x_{2}) = \min\left(x_{1}^{1}, x_{2}^{1}\right)$$

• Bundle demanded by consumer 1:

$$x_1^{1*} = x_2^{1*} = x^{1*} = \frac{p_1 \omega_1^1 + p_2 \omega_2^1}{p_1 + p_2} = \frac{\omega_1^1 + (p_2/p_1) \omega_2^1}{1 + (p_2/p_1)}$$

• Graphically

- Comparative statics:
 - increase in ω
 - increase in p_2/p_1 :

$$\frac{dx_1^{1*}}{dp_2/p_1} = \frac{-\left(\omega_1^1 + (p_2/p_1)\right)}{\left(1 + (p_2/p_1)\omega_2^1\right)} = \frac{\omega_2^1 - \omega_1^1}{\left(1 + (p_2/p_1)\right)^2} =$$

- Effect depends on income effect through endowments:
 - * A lot of good 2 -> increase in price of good
 2 makes richer
 - Little good 2 -> increase in price of good 2 makes poorer
- Notice: Only ratio of prices matters (general feature)

• Consumer 2 has Cobb-Douglas preferences:

$$u(x_{1,x_{2}}) = (x_{1}^{2})^{.5} (x_{2}^{2})^{.5}$$

• Demands of consumer 2:

$$x_1^{2*} = \frac{.5\left(p_1\omega_1^1 + p_2\omega_2^1\right)}{p_1} = .5\left(\omega_1^1 + \frac{p_2}{p_1}\omega_2^1\right)$$

 $\quad \text{and} \quad$

$$x_2^{2*} = \frac{.5\left(p_1\omega_1^1 + p_2\omega_2^1\right)}{p_2} = .5\left(\frac{p_1}{p_2}\omega_1^1 + \omega_2^1\right)$$

- Comparative statics:
 - increase in ω –> Increase in final consumption
 - increase in p_2/p_1 –> Unambiguous increase in $x_1^{2\ast}$ and decrease in $x_2^{2\ast}$

• Impose Walrasian equilibrium in market 1:

$$x_1^{1*} + x_1^{2*} = \omega_1^1 + \omega_1^2$$

This implies

$$\frac{\omega_1^1 + (p_2/p_1)\omega_2^1}{1 + (p_2/p_1)} + .5\left(\omega_1^1 + \frac{p_2}{p_1}\omega_2^1\right) = \omega_1^1 + \omega_1^2$$

or

$$\frac{.5 - .5 \left(p_2/p_1\right)}{1 + \left(p_2/p_1\right)} \omega_1^1 + \frac{.5 \left(p_2/p_1\right) + .5 \left(p_2/p_1\right)^2 - 1}{1 + \left(p_2/p_1\right)} \omega_2^1 = 0$$
 or

$$(\omega_1^1 - 2\omega_2^1) + (\omega_1^1 + \omega_2^1) (p_2/p_1) + \omega_2^1 (p_2/p_1)^2 = 0$$

• Solution for p_2/p_1 :

$$\frac{p_2}{p_1} = \frac{-\left(\omega_1^1 - 2\omega_2^1\right) + \sqrt{\begin{array}{c} \left(\omega_1^1 + \omega_2^1\right)^2 \\ -4\left(\omega_1^1 - 2\omega_2^1\right)\omega_2^1 \\ 2\left(\omega_1^1 - 2\omega_2^1\right) \end{array}}$$

• Some complicated solution!

• Problem set has solution that is much easier to compute (and interpret)

3 Existence and Welfare Theorems

• Does Walrasian Equilibrium always exist? In general, yes, as long as preference convex

• Is Walrasian Equilibrium always unique? Not necessarily

• Is Walrasian Equilibrium efficient? Yes.

• First Fundamental Welfare Theorem. All Walrasian Equilibria are on Contract Curve (and therefore are Pareto Efficient).

• Figure

• Second Fundamental Welfare theorem. Given convex preferences, for every Pareto efficient allocation $((x_1^1, x_1^1), (x_1^2, x_2^2))$ there exists some endowment (ω_1, ω_2) such that $((x_1^1, x_1^1), (x_1^2, x_2^2))$ is a Walrasian Equilibrium for endowment (ω_1, ω_2) .

- Significance of these results:
 - First Theorem: Smithian Invisible Hand. Market leads to an allocation that is Pareto Efficient.
 - BUT: problems with externalities and public good
 - BUT: what about distribution?

- Second Theorem: Can redistribute endowments to achieve any efficient outcome as a WE.
- But redistribution is hard to implement, and distortive.

4 Asymmetric Information: Introduction

- Nicholson, Ch. 18, pp. 627-632 [*NOT* in 9th Ed.]
- Common economic relationship
- Contract between two parties:
 - Principal
 - Agent
- Two parties have asymmetric information
 - Principal offers a contract to the agent
 - Agent chooses an action
 - Action of agent (or his type) is not observed by principle

- Example 1: Manager and worker
 - Manager employs worker and offers wage
 - Worker exerts effort (not observed)
 - Manager pays worker as function of output
- Example 2: Car Insurance
 - Car insurance company offers insurance contract
 - Driver chooses quality of driving (not observed)
 - Insurance company pays for accidents
- Example 3: Shareholders and CEO
 - Shareholders choose compensation for CEO
 - CEO puts effort
 - CEO paid as function of stock price

- In all of these cases (and many more!), common structure
 - Principal would like to observe effort (of worker, of CEO, of driver)
 - Unfortunately, this is not observable
 - Only a related, noisy proxy is observable: output, accident, success
 - Contract offered by principal is function of this proxy
- This means that occasionally an agent that put a lot of effort but has bad luck is 'punished'
- Also, agents that shirked may instead be compensated
- These principle-agent problems are called *hidden action* or *moral hazard*

- Second category (next lecture): *hidden type* or *adverse selection*
- Example 1: Manager and worker
 - Manager employs worker and offers wage
 - Worker can be hard-working or lazy
- Example 2: Car Insurance
 - Car insurance company offers insurance contract
 - Drivers ex ante can be careful or careless
- Example 3: Shareholders and CEO
 - Shareholders choose compensation for CEO
 - CEO is high-quality or thief

- Problem is similar (action is not observed), but with a twist
 - Hidden action: principal can convince agent to exert high effort with the appropriate incentives
 - Hidden type: agent's behavior is not affected by incentives, but by her type
- Different task for principal:
 - Hidden action: Principal wants to incentivize agent to work hard
 - Hidden type: Principal wants to make sure to recruit 'good' agent, not 'bad' one
- Two look similar, but analysis is different
- Start from *Hidden Action*

5 Next lecture

- Asymmetric Information
- Moral Hazard