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1 Implicit function theorem II

• Multivariate implicit function theorem (Dini):

Consider a set of equations (1(1  ;1  ) =

0; ; (1  ;1  ) = 0), and a point

(00) solution of the equation. Assume:

1. 1   continuously differentiable in a neigh-

bourhood of (00);

2. The following Jakobian matrix f
x evaluated at

(00) has determinant different from 0:
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• Then:

1. There is one and only set of functions = g()

defined in a neighbourhood of 0 that satisfy

f( g()) = 0 and g(0) =0;

2. The partial derivative of  with respect to  is
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• Example 2 (continued): Max (1 2) = 1 ∗21+
2 ∗ 22 − 21 − 52

• f.o.c. 1 : 21 ∗ 1 − 2 = 0 = 1()

• f.o.c. 2 : 22 ∗ 2 − 5 = 0 = 2()

• Comparative statics of ∗1 with respect to 1?
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• Then compute det
µ
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• Finally, 11
=

• Why did you compute det
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already?



2 Envelope Theorem

• Ch. 2, pp. 32-36 (33—37, 9th Ed)

• You now know how ∗1 varies if 1 varies.

• How does  (x∗ (p)) vary as 1 varies?

• Differentiate (∗1(1 2) ∗2(1 2) 1 2) with
respect to 1:

(∗1(1 2) ∗2(1 2) 1 2)
1

=
(x∗p)
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∗ 

∗
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+
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• The first two terms are zero.



• Envelope Theorem for unconstrained maximization.
Assume that you maximize function (x;p) with re-

spect to  Consider then the function  at the op-

timum, that is, (x∗(p)p) The total differential
of this function with respect to  equals the partial

derivative with respect to :

(x∗(p)p)


=
(x∗(p)p)




• You can disregard the indirect effects. Graphical in-
tuition.



3 Convexity and concavity

• Function  from  ⊂  to  is concave if

(+ (1− )) ≥ () + (1− )()

for all   ∈  and for all  ∈ [0 1]

• Notice:  must be convex set, i.e., if  ∈  and

 ∈  then + (1− ) ∈  for  ∈ [0 1]

• Function  from  ⊂  to  is strictly concave if

(+ (1− ))  () + (1− )()

for all   ∈  and for all  ∈ (0 1)

• Function  from  to  is convex if− is concave.



• Alternative characterization of convexity.

• A function  twice differentiable, is concave if and
only if for all  the subdeterminants || of the
Hessian matrix have the property |1| ≤ 0 |2| ≥
0 |3| ≤ 0 and so on.

• For the univariate case, this reduces to  00 ≤ 0 for

all 

• For the bivariate case, this reduces to  00 ≤ 0 and
 00 ∗  00 −

³
 00

´2 ≥ 0
• A twice-differentiable function is strictly concave if
the same property holds with strict inequalities.



• Examples.

1. For which values of   and  is  () = 3+
2 +  +  is the function concave over ?
Strictly concave? Convex?

2. Is  ( ) = −2 − 2 concave?

• For Example 2, compute the Hessian matrix

—  0 =   0 =

—  00 =   00 =

—  00 =   00 =

— Hessian matrix  :

 =

Ã
 00 =  00 =

00
 = 

00
 =

!

• Compute |1| =  00 and |2| =  00 ∗  00 −³
 00

´2



• Why are convexity and concavity important?

• Theorem. Consider a twice-differentiable concave
(convex) function over  ⊂  If the point x0 sat-

isfies the fist order conditions, it is a global maximum

(minimum).

• For the proof, we need to check that the second-
order conditions are satisfied.

• These conditions are satisfied by definition of con-
cavity!

• (We have only proved that it is a local maximum)



4 Constrained maximization

• Ch. 2, pp. 36-42 (38—44, 9th Ed)

• So far unconstrained maximization on  (or open

subsets)

• What if there are constraints to be satisfied?

• Example 1: max  ∗  subject to 3+  = 5

• Substitute it in: max  ∗ (5− 3)

• Solution: ∗ =

• Example 2: max  subject to  exp()+ exp() =
5

• Solution: ?



• Graphical intuition on general solution.

• Example 3: max ( ) =  ∗  s.t. ( ) =
2 + 2 − 1 = 0

• Draw 0 = ( ) = 2 + 2 − 1

• Draw  ∗  =  with   0 Vary 

• Where is optimum?

• Where  along curve  =  equals 

along curve 2 + 2 − 1 = 0

• Write down these slopes.



• Idea: Use implicit function theorem.

• Heuristic solution of system

max


( )

s.t. ( ) = 0

• Assume:

— continuity and differentiability of 

— 0 6= 0 (or 0 6= 0)

• Implicit function Theorem: Express  as a function
of  (or  as function of )!



• Write system as max ( ())

• f.o.c.:  0( ()) +  0( ()) ∗ ()
 = 0

• What is () ?

• Substitute in and get:  0( ()) +  0( ()) ∗
(−00) = 0 or

 0( ())
 0( ())

=
0( ())
0( ())



• Lagrange Multiplier Theorem, necessary condi-
tion. Consider a problem of the type

max
1

 (1 2  ;p)

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 (1 2  ;p) = 0
2 (1 2  ;p) = 0


 (1 2  ;p) = 0

with    Let x∗ = x∗(p) be a local solution to
this problem.

• Assume:

—  and  differentiable at ∗

— the following Jacobian matrix at x∗ has maximal
rank

 =
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• Then, there exists a vector λ = (1  ) such

that (x∗λ) maximize the Lagrangean function

(xλ) = (x;p)−
X
=0

(x;p)

• Case  = 2 = 1

• First order conditions are
(x;p)


− 

(x;p)


= 0

for  = 1 2

• Rewrite as
 01
 02

=
01
02



Constrained Maximization, Sufficient condition

for the case  = 2 = 1.

• If x∗ satisfies the Lagrangean condition, and the de-
terminant of the bordered Hessian

 =
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12
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is positive, then x∗ is a constrained maximum.

• If it is negative, then x∗ is a constrained minimum.

• Why? This is just the Hessian of the Lagrangean 
with respect to , 1 and 2



• Example 4: max 2−+2 s.t. 2+2− = 0

• max 2 −  + 2 − (2 + 2 − )

• F.o.c. with respect to :

• F.o.c. with respect to :

• F.o.c. with respect to :

• Candidates to solution?

• Maxima and minima?



5 Next Class

• Next class:

— More on Constrained Maximization

— Preferences


