Economics 101A (Lecture 5)

Stefano DellaVigna

January 31, 2012

Outline

1. Properties of Preferences II

2. From Preferences to Utility (and viceversa)
3. Common Utility Functions
4. Utility maximization

1 Properties of Preferences II

- Indifference relation $\sim: x \sim y$ if $x \succeq y$ and $y \succeq x$
- Strict preference: $x \succ y$ if $x \succeq y$ and not $y \succeq x$
- Exercise. If \succeq is rational,
$-\succ$ is transitive
$-\sim$ is transitive
- Reflexive property of \succeq. For all $x, x \succeq x$.
- Other features of preferences
- Preference relation \succeq is:
- monotonic if $x \geq y$ implies $x \succeq y$.
- strictly monotonic if $x \geq y$ and $x_{j}>y_{j}$ for some j implies $x \succ y$.
- convex if for all x, y, and z in X such that $x \succeq z$ and $y \succeq z$, then $t x+(1-t) y \succeq z$ for all t in [0, 1]

2 From preferences to utility

- Nicholson, Ch. 3
- Economists like to use utility functions $u: X \rightarrow R$
- $u(x)$ is 'liking' of $\operatorname{good} x$
- $u(a)>u(b)$ means: I prefer a to b.
- Def. Utility function u represents preferences \succeq if, for all x and y in $X, x \succeq y$ if and only if $u(x) \geq$ $u(y)$.
- Theorem. If preference relation \succeq is rational and continuous, there exists a continuous utility function $u: X \rightarrow R$ that represents it.
- [Skip proof]
- Example:

$$
\left(x_{1}, x_{2}\right) \succeq\left(y_{1}, y_{2}\right) \text { iff } x_{1}+x_{2} \geq y_{1}+y_{2}
$$

- Draw:
- Utility function that represents it: $u(x)=x_{1}+x_{2}$
- But... Utility function representing \succeq is not unique
- Take $3 u(x)$ or $\exp (u(x))$
- $u(a)>u(b) \Longleftrightarrow \exp (u(a))>\exp (u(b))$
- If $u(x)$ represents preferences \succeq and f is a strictly increasing function, then $f(u(x))$ represents \succeq as well.
- If preferences are represented from a utility function, are they rational?
- completeness
- transitivity
- Indifference curves: $u\left(x_{1}, x_{2}\right)=\bar{u}$
- They are just implicit functions! $u\left(x_{1}, x_{2}\right)-\bar{u}=0$

$$
\frac{d x_{2}}{d x_{1}}=-\frac{U_{x_{1}}^{\prime}}{U_{x_{2}}^{\prime}}=M R S
$$

- Indifference curves for:
- monotonic preferences;
- strictly monotonic preferences;
- convex preferences

3 Common utility functions

- Nicholson, Ch. 3, pp. 100-104 (82-86, 9th)

1. Cobb-Douglas preferences: $u\left(x_{1}, x_{2}\right)=x_{1}^{\alpha} x_{2}^{1-\alpha}$

- $M R S=-\alpha x_{1}^{a-1} x_{2}^{1-\alpha} /(1-a) x_{1}^{\alpha} x_{2}^{-\alpha}=\frac{\alpha}{1-\alpha} \frac{x_{2}}{x_{1}}$

2. Perfect substitutes: $u\left(x_{1}, x_{2}\right)=\alpha x_{1}+\beta x_{2}$

- $M R S=-\alpha / \beta$

3. Perfect complements: $u\left(x_{1}, x_{2}\right)=\min \left(\alpha x_{1}, \beta x_{2}\right)$

- $M R S$ discontinuous at $x_{2}=\frac{\alpha}{\beta} x_{1}$

4. Constant Elasticity of Substitution: $u\left(x_{1}, x_{2}\right)=$ $\left(\alpha x_{1}^{\rho}+\beta x_{2}^{\rho}\right)^{1 / \rho}$

- $M R S=-\frac{\alpha}{\beta}\left(\frac{x_{1}}{x_{2}}\right)^{\rho-1}$
- if $\rho=1$, then...
- if $\rho=0$, then \ldots
- if $\rho \rightarrow-\infty$, then...

4 Utility Maximization

- Nicholson, Ch. 4, pp. 114-124 (94-105, 9th)
- $X=R_{+}^{2}(2$ goods $)$
- Consumers: choose bundle $x=\left(x_{1}, x_{2}\right)$ in X which yields highest utility.
- Constraint: income $=M$
- Price of good $1=p_{1}$, price of good $2=p_{2}$
- Bundle x is feasible if $p_{1} x_{1}+p_{2} x_{2} \leq M$
- Consumer maximizes

$$
\begin{aligned}
& \max _{x_{1}, x_{2}} u\left(x_{1}, x_{2}\right) \\
& \text { s.t. } p_{1} x_{1}+p_{2} x_{2} \leq M \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

- Maximization subject to inequality. How do we solve that?
- Trick: u strictly increasing in at least one dimension. (\succeq strictly monotonic)
- Budget constraint always satisfied with equality
- Ignore temporarily $x_{1} \geq 0, x_{2} \geq 0$ and check afterwards that they are satisfied for x_{1}^{*} and x_{2}^{*}.

- Problem becomes

$$
\begin{aligned}
& \max _{x_{1}, x_{2}} u\left(x_{1}, x_{2}\right) \\
& \text { s.t. } p_{1} x_{1}+p_{2} x_{2}-M=0
\end{aligned}
$$

5 Next Class

- Utility Maximization (ctd)
- Utility Maximization - tricky cases
- Indirect Utility Function

