Economics 101A (Lecture 6)

Stefano DellaVigna

February 2, 2012

Outline

- 1. Utility maximization
- 2. Utility maximization Tricky Cases
- 3. Indirect Utility Function

1 Utility Maximization

- Nicholson, Ch. 4, pp. 114-124 (94-105, 9th)
- $X = R_{+}^{2}$ (2 goods)
- Consumers: choose bundle $x = (x_1, x_2)$ in X which yields highest utility.
- Constraint: income = M
- Price of good $1 = p_1$, price of good $2 = p_2$
- Bundle x is feasible if $p_1x_1 + p_2x_2 \le M$
- Consumer maximizes

 $\max_{x_1, x_2} u(x_1, x_2)$ s.t. $p_1 x_1 + p_2 x_2 \le M$ $x_1 \ge 0, \ x_2 \ge 0$

- Maximization subject to inequality. How do we solve that?
- Trick: *u* strictly increasing in at least one dimension.
 (≻ strictly monotonic)
- Budget constraint always satisfied with equality

• Ignore temporarily $x_1 \ge 0$, $x_2 \ge 0$ and check afterwards that they are satisfied for x_1^* and x_2^* .

• Problem becomes

$$\max_{x_1, x_2} u(x_1, x_2)$$

s.t. $p_1 x_1 + p_2 x_2 - M = 0$

•
$$L(x_1, x_2) = u(x_1, x_2) - \lambda(p_1 x_1 + p_2 x_2 - M)$$

• F.o.c.s:

$$u'_{x_i} - \lambda p_i = 0$$
 for $i = 1, 2$
 $p_1 x_1 + p_2 x_2 - M = 0$

• Moving the two terms across and dividing, we get:

$$MRS = -\frac{u'_{x_1}}{u'_{x_2}} = -\frac{p_1}{p_2}$$

• Graphical interpretation.

• Second order conditions:

$$H = \begin{pmatrix} 0 & -p_1 & -p_2 \\ -p_1 & u_{x_1,x_1}'' & u_{x_1,x_2}'' \\ -p_2 & u_{x_2,x_1}'' & u_{x_2,x_2}'' \end{pmatrix}$$

$$|H| = p_1 \left(-p_1 u''_{x_2, x_2} + p_2 u''_{x_2, x_1} \right) - p_2 \left(-p_1 u''_{x_1, x_2} + p_2 u''_{x_1, x_1} \right) = -p_1^2 u''_{x_2, x_2} + 2p_1 p_2 u''_{x_1, x_2} - p_2^2 u''_{x_1, x_1}$$

- Notice: $u_{x_2,x_2}'' < 0$ and $u_{x_1,x_1}'' < 0$ usually satisfied (but check it!).
- $\bullet \ \mbox{Condition} \ u_{x_1,x_2}'' > 0$ is then sufficient

• Example with CES utility function.

$$\max_{x_1, x_2} \left(\alpha x_1^{\rho} + \beta x_2^{\rho} \right)^{1/\rho}$$

s.t. $p_1 x_1 + p_2 x_2 - M = 0$

- Lagrangean =
- F.o.c.:

• Solution:

$$x_1^* = \frac{M}{p_1 \left(1 + \left(\frac{\alpha}{\beta}\right)^{\frac{1}{\rho-1}} \left(\frac{p_2}{p_1}\right)^{\frac{\rho}{\rho-1}}\right)}$$
$$x_2^* = \frac{M}{p_2 \left(1 + \left(\frac{\beta}{\alpha}\right)^{\frac{1}{\rho-1}} \left(\frac{p_1}{p_2}\right)^{\frac{\rho}{\rho-1}}\right)}$$

• Special case 1: $\rho = 0$ (Cobb-Douglas)

$$x_{1}^{*} = \frac{\alpha}{\alpha + \beta} \frac{M}{p_{1}}$$
$$x_{2}^{*} = \frac{\beta}{\alpha + \beta} \frac{M}{p_{2}}$$

• Special case 1: $ho
ightarrow \mathbf{1}$ (Perfect Substitutes)

$$\begin{array}{rcl} x_1^* &=& \left\{ \begin{array}{ccc} 0 & \text{if} & p_1/p_2 \geq \alpha/\beta \\ M/p_1 & \text{if} & p_1/p_2 < \alpha/\beta \end{array} \right. \\ x_2^* &=& \left\{ \begin{array}{ccc} M/p_2 & \text{if} & p_1/p_2 \geq \alpha/\beta \\ 0 & \text{if} & p_1/p_2 < \alpha/\beta \end{array} \right. \end{array}$$

• Special case 1: $ho \to -\infty$ (Perfect Complements)

$$x_1^* = \frac{M}{p_1 + p_2} = x_2^*$$

• Parameter ρ indicates substition pattern between goods:

- $\rho > 0$ -> Goods are (net) substitutes

– ρ < 0 –> Goods are (net) complements

2 Utility maximization – tricky cases

1. Non-convex preferences. Example:

2. Example with CES utility function.

$$\max_{x_1, x_2} \left(\alpha x_1^{\rho} + \beta x_2^{\rho} \right)^{1/\rho}$$

s.t. $p_1 x_1 + p_2 x_2 - M = \mathbf{0}$

- With $\rho > 1$ the interior solution is a minimum!
- Draw indifference curves for ho=1 (boundary case) and ho=2

• Can also check using second order conditions

2. Solution does not satisfy $x_1^* > 0$ or $x_2^* > 0$. Example:

 $\max x_1 * (x_2 + 5)$ s.t. $p_1 x_1 + p_2 x_2 = M$

• In this case consider corner conditions: what happens for $x_1^* = 0$? And $x_2^* = 0$?

3. Multiplicity of solutions. Example:

• Convex preferences that are not strictly convex

3 Indirect utility function

- Nicholson, Ch. 4, pp. 124-127 (106-108, 9th)
- Define the indirect utility v(p, M) ≡ u(x*(p, M)), with p vector of prices and x* vector of optimal solutions.
- $v(\mathbf{p}, M)$ is the utility at the optimimum for prices \mathbf{p} and income M
- Some comparative statics: $\partial v(\mathbf{p}, M) / \partial M = ?$
- Hint: Use Envelope Theorem on Lagrangean function

• What is the sign of λ ?

•
$$\lambda = u'_{x_i}/p > 0$$

- $\partial v(\mathbf{p}, M) / \partial p_i = ?$
- Properties:
 - Indirect utility is always increasing in income ${\cal M}$
 - Indirect utility is always decreasing in the price $p_i \label{eq:pi}$

4 Next Class

- Comparative Statics:
 - with respect to price
 - with respect to income