Economics 101A (Lecture 8)

Stefano DellaVigna

February 9, 2012

Outline

1. Expenditure Minimization

2. Slutsky Equation

1 Expenditure minimization

- Nicholson, Ch. 4, pp. 127-132 (109-113, 9th)
- Solve problem EMIN (minimize expenditure):

$$
\begin{aligned}
& \min p_{1} x_{1}+p_{2} x_{2} \\
& \text { s.t. } u\left(x_{1}, x_{2}\right) \geq \bar{u}
\end{aligned}
$$

- Choose bundle that attains utility \bar{u} with minimal expenditure
- Ex.: You are choosing combination CDs/restaurant to make a friend happy
- If utility u strictly increasing in x_{i}, can maximize s.t. equality
- Denote by $h_{i}\left(p_{1}, p_{2}, \bar{u}\right)$ solution to EMIN problem
- $h_{i}\left(p_{1}, p_{2}, \bar{u}\right)$ is Hicksian or compensated demand
- Graphically:
- Fix indifference curve at level \bar{u}
- Consider budget sets with different M
- Pick budget set which is tangent to indifference curve
- Optimum coincides with optimum of Utility Maximization!
- Formally:

$$
h_{i}\left(p_{1}, p_{2}, \bar{u}\right)=x_{i}^{*}\left(p_{1}, p_{2}, e\left(p_{1}, p_{2}, \bar{u}\right)\right)
$$

- Expenditure function is expenditure at optimum
- $e\left(p_{1}, p_{2}, \bar{u}\right)=p_{1} h_{1}\left(p_{1}, p_{2}, \bar{u}\right)+p_{2} h_{2}\left(p_{1}, p_{2}, \bar{u}\right)$
- $h_{i}\left(p_{i}\right)$ is Hicksian or compensated demand function
- Is h_{i} always decreasing in p_{i} ? Yes!
- Graphical proof: moving along a convex indifference curve
- (For non-convex indifferent curves, still true)
- Using first order conditions:

$$
\begin{gathered}
L\left(x_{1}, x_{2}, \lambda\right)=p_{1} x_{1}+p_{2} x_{2}-\lambda\left(u\left(x_{1}, x_{2}\right)-\bar{u}\right) \\
\frac{\partial L}{\partial x_{i}}=p_{i}-\lambda u_{i}^{\prime}\left(x_{1}, x_{2}\right)=0
\end{gathered}
$$

- Write as ratios:

$$
\frac{u_{1}^{\prime}\left(x_{1}, x_{2}\right)}{u_{2}^{\prime}\left(x_{1}, x_{2}\right)}=\frac{p_{1}}{p_{2}}
$$

- $M R S=$ ratio of prices as in utility maximization!
- However: different constraint $\Longrightarrow \lambda$ is different
- Example 1: Cobb-Douglas utility

$$
\begin{aligned}
& \min p_{1} x_{1}+p_{2} x_{2} \\
& \text { s.t. } x_{1}^{\alpha} x_{2}^{1-\alpha} \geq \bar{u}
\end{aligned}
$$

- Lagrangean $=$
- F.o.c.:
- Solution: $h_{1}^{*}=$

$$
h_{2}^{*}=
$$

- $\partial h_{i}^{*} / \partial p_{i}<0, \partial h_{i}^{*} / \partial p_{j}>0, j \neq i$

2 Slutsky Equation

- Nicholson, Ch. 5, pp. 155-158 (135-138, 9th)
- Now: go back to Utility Max. in case where p_{2} increases to $p_{2}^{\prime}>p_{2}$
- What is $\partial x_{2}^{*} / \partial p_{2}$? Decompose effect:

1. Substitution effect of an increase in p_{i}

- $\partial h_{2}^{*} / \partial p_{2}$, that is change in EMIN point as p_{2} descreases
- Moving along an indifference curve
- Certainly $\partial h_{2}^{*} / \partial p_{2}<0$

2. Income effect of an increase in p_{i}

- $\partial x_{2}^{*} / \partial M$, increase in consumption of good 2 due to increased income
- Shift out a budget line
- $\partial x_{2}^{*} / \partial M>0$ for normal goods, $\partial x_{2}^{*} / \partial M<$ 0 for inferior goods
- $h_{i}\left(p_{1}, p_{2}, \bar{u}\right)=x_{i}^{*}\left(p_{1}, p_{2}, e\left(p_{1}, p_{2}, \bar{u}\right)\right)$
- How does the Hicksian demand change if price p_{i} changes?

$$
\frac{d h_{i}}{d p_{i}}=\frac{\partial x_{i}^{*}(\mathbf{p}, e)}{\partial p_{i}}+\frac{\partial x_{i}^{*}(\mathbf{p}, e)}{\partial M} \frac{\partial e(\mathbf{p}, \bar{u})}{\partial p_{i}}
$$

- What is $\frac{\partial e(\mathbf{p}, \bar{u})}{\partial p_{i}}$? Envelope theorem:

$$
\begin{aligned}
\frac{\partial e(\mathbf{p}, \bar{u})}{\partial p_{i}} & =\frac{\partial}{\partial p_{i}}\left[p_{1} h_{1}^{*}+p_{2} h_{2}^{*}-\lambda\left(u\left(h_{1}^{*}, h_{2}^{*}, \bar{u}\right)-\bar{u}\right)\right] \\
& =h_{i}^{*}\left(p_{1}, p_{2}, \bar{u}\right)=x_{i}^{*}\left(p_{1}, p_{2}, e(p, \bar{u})\right)
\end{aligned}
$$

- Therefore

$$
\frac{\partial h_{i}(\mathbf{p}, \bar{u})}{\partial p_{i}}=\frac{\partial x_{i}^{*}(\mathbf{p}, e)}{\partial p_{i}}+\frac{\partial x_{i}^{*}(\mathbf{p}, e)}{\partial M} x_{1}^{*}\left(p_{1}, p_{2}, e\right)
$$

- Rewrite as

$$
\begin{aligned}
\frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial p_{i}}= & \frac{\partial h_{i}(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_{i}} \\
& -x_{1}^{*}\left(p_{1}, p_{2}, M\right) \frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial M}
\end{aligned}
$$

- Important result! Allows decomposition into substitution and income effect
- Two effects of change in price:

1. Substitution effect negative: $\frac{\partial h_{i}(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_{i}}<0$
2. Income effect: $-x_{1}^{*}\left(p_{1}, p_{2}, M\right) \frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial M}$

- negative if good i is normal $\left(\frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial M}>0\right)$
- positive if good i is inferior $\left(\frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial M}<0\right)$
- Overall, sign of $\frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial p_{i}}$?
- negative if good i is normal
- it depends if good i is inferior
- Example 1 (ctd.): Cobb-Douglas. Apply Slutsky equation
- $x_{i}^{*}=\alpha M / p_{i}$
- $h_{i}^{*}=$
- Derivative of Hicksian demand with respect to price:

$$
\frac{\partial h_{i}(\mathbf{p}, \bar{u})}{\partial p_{i}}=
$$

- Rewrite h_{i}^{*} as function of $m: h_{i}(\mathbf{p}, v(\mathbf{p}, M))$
- Compute $v(\mathbf{p}, M)=$
- Substitution effect:

$$
\frac{\partial h_{i}(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_{i}}=
$$

- Income effect:

$$
-x_{i}^{*}\left(p_{1}, p_{2}, M\right) \frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial M}=
$$

- Sum them up to get

$$
\frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial p_{i}}=
$$

- It works!

3 Next Lectures

- Complements and Substitutes
- Then moving on to applications:
- Labor Supply
- Intertemporal choice
- Economics of Altruism

