Economics 101A (Lecture 9)

Stefano DellaVigna

February 14, 2012

Outline

1. Complements and substitutes

2. Do utility functions exist?
3. Application 1: Labor Supply
4. Application 2: Intertemporal choice I

1 Complements and substitutes

- Nicholson, Ch. 6, pp. 182-187 (161-166, 9th)
- How about if price of another good changes?
- Generalize Slutsky equation
- Slutsky Equation:

$$
\begin{aligned}
\frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial p_{j}}= & \frac{\partial h_{i}(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_{j}} \\
& -x_{j}^{*}\left(p_{1}, p_{2}, M\right) \frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial M}
\end{aligned}
$$

- Substitution effect

$$
\frac{\partial h_{i}(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_{j}}>0
$$

for $n=2$ (two goods). Ambiguous for $n>2$.

- Income effect:

$$
-x_{j}^{*}\left(p_{1}, p_{2}, M\right) \frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial M}
$$

- negative if good i is normal
- positive if good i is inferior
- How do we define complements and substitutes?
- Def. 1. Goods i and j are gross substitutes at price p and income M if

$$
\frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial p_{j}}>0
$$

- Def. 2. Goods i and j are gross complements at price \mathbf{p} and income M if

$$
\frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial p_{j}}<0
$$

- Example 1 (ctd.): $x_{1}^{*}=\alpha M / p_{1}, x_{2}^{*}=\beta M / p_{2}$.
- Gross complements or gross substitutes? Neither!
- Notice: $\frac{\partial x_{i}^{*}(\mathbf{p}, M)}{\partial p_{j}}$ is usually different from $\frac{\partial x_{j}^{*}(\mathbf{p}, M)}{\partial p_{i}}$
- Better definition.
- Def. 3. Goods i and j are net substitutes at price p and income M if

$$
\frac{\partial h_{i}^{*}(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_{j}}=\frac{\partial h_{j}^{*}(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_{i}}>0
$$

- Def. 4. Goods i and j are net complements at price \mathbf{p} and income M if

$$
\frac{\partial h_{i}^{*}(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_{j}}=\frac{\partial h_{j}^{*}(\mathbf{p}, v(\mathbf{p}, M))}{\partial p_{i}}<0
$$

- Example 1 (ctd.): $h_{1}^{*}=\bar{u}\left(\frac{\alpha}{1-\alpha} \frac{p_{2}}{p_{1}}\right)^{1-\alpha}$
- Net complements or net substitutes? Net substitutes!

2 Do utility functions exist?

- Preferences and utilities are theoretical objects
- Many different ways to write them
- How do we tie them to the world?
- Use actual choices - revealed preferences approach
- Typical economists' approach. Compromise of:
- realism
- simplicity
- Assume a class of utility functions (CES, Cobb-Douglas...) with free parameters
- Estimate the parameters using the data

3 Labor Supply

- Nicholson Ch. 16, pp. 573-581 (477-484, 9th)
- Labor supply decision: how much to work in a day.
- Goods: consumption good c, hours worked h
- Price of good p, hourly wage w
- Consumer spends $24-h=l$ hours in units of leisure
- Utilify function: $u(c, l)$
- Budget constraint?
- Income of consumer: $M+w h=M+w(24-l)$
- Budget constraint: $p c \leq M+w(24-l)$ or

$$
p c+w l \leq M+24 w
$$

- Notice: leisure l is a consumption good with price w. Why?
- General category: opportunity cost
- Instead of enjoying one hour of TV, I could have worked one hour and gained wage w.
- You should value the marginal hour of TV w !
- Opportunity costs are very important!
- Example 2. CostCo has a warehouse in SoMa
- SoMa used to have low cost land, adequate for warehouses
- Price of land in SoMa triples in 10 years.
- Should firm relocate the warehouse?
- Did costs of staying in SoMa go up?
- No.
- Did the opportunity cost of staying in SoMa go up?
- Yes!
- Firm can sell at high price and purchase land in cheaper area.
- Let's go back to labor supply
- Maximization problem is

$$
\begin{aligned}
& \max u(c, l) \\
& \text { s.t. } p c+w l \leq M+24 w
\end{aligned}
$$

- Standard problem (except for $24 w$)
- First order conditions
- Assume utility function Cobb-Douglas:

$$
u(c, l)=c^{\alpha} l^{1-\alpha}
$$

- Solution is

$$
\begin{aligned}
c^{*} & =\alpha \frac{M+24 w}{p} \\
l^{*} & =(1-\alpha)\left(24+\frac{M}{w}\right)
\end{aligned}
$$

- Both c and l are normal goods
- Unlike in standard Cobb-Douglas problems, c^{*} depends on price of other good w
- Why? Agents are endowed with M AND 24 hours of l in this economy
- Normally, agents are only endowed with M

4 Intertemporal choice

- Nicholson Ch. 17, pp. 597-601 (502-506, 9th)
- So far, we assumed people live for one period only
- Now assume that people live for two periods:
- $t=0$ - people are young
- $t=1$ - people are old
- $t=0$: income M_{0}, consumption c_{0} at price $p_{0}=1$
- $t=1$: income $M_{1}>M_{0}$, consumption c_{1} at price $p_{1}=1$
- Credit market available: can lend or borrow at interest rate r
- Budget constraint in period 1 ?
- Sources of income:
- M_{1}
$-\left(M_{0}-c_{0}\right) *(1+r)$ (this can be negative)
- Budget constraint:

$$
c_{1} \leq M_{1}+\left(M_{0}-c_{0}\right) *(1+r)
$$

or

$$
c_{0}+\frac{1}{1+r} c_{1} \leq M_{0}+\frac{1}{1+r} M_{1}
$$

- Utility function?
- Assume

$$
u\left(c_{0}, c_{1}\right)=U\left(c_{0}\right)+\frac{1}{1+\delta} U\left(c_{1}\right)
$$

- $U^{\prime}>0, U^{\prime \prime}<0$
- δ is the discount rate
- Higher δ means higher impatience
- Elicitation of δ through hypothetical questions
- Person is indifferent between 1 hour of TV today and $1+\delta$ hours of TV next period
- Maximization problem:

$$
\begin{aligned}
& \max U\left(c_{0}\right)+\frac{1}{1+\delta} U\left(c_{1}\right) \\
& \text { s.t. } c_{0}+\frac{1}{1+r} c_{1} \leq M_{0}+\frac{1}{1+r} M_{1}
\end{aligned}
$$

5 Next Lectures

- Applications:
- Intertemporal Choice II
- Economics of Altruism

