Economics 101A (Lecture 10)

Stefano DellaVigna

February 16, 2012

Outline

1. Application 2: Intertemporal choice

2. Application 3: Altruism and charitable donations

1 Intertemporal choice II

- Maximization problem:

$$
\begin{aligned}
& \max U\left(c_{0}\right)+\frac{1}{1+\delta} U\left(c_{1}\right) \\
& \text { s.t. } c_{0}+\frac{1}{1+r} c_{1} \leq M_{0}+\frac{1}{1+r} M_{1}
\end{aligned}
$$

- Lagrangean
- First order conditions:
- Ratio of f.o.c.s:

$$
\frac{U^{\prime}\left(c_{0}\right)}{U^{\prime}\left(c_{1}\right)}=\frac{1+r}{1+\delta}
$$

- Case $r=\delta$
$-c_{0}^{*} \quad c_{1}^{*}$?
- Substitute into budget constraint using $c_{0}^{*}=$ $c_{1}^{*}=c^{*}$:

$$
\frac{2+r}{1+r} c^{*}=\left[M_{0}+\frac{1}{1+r} M_{1}\right]
$$

or

$$
c^{*}=\frac{1+r}{2+r} M_{0}+\frac{1}{2+r} M_{1}
$$

- We solved problem virtually without any assumption on U !
- Notice: $M_{0}<c^{*}<M_{1}$
- Case $r>\delta$

$$
-c_{0}^{*} \quad c_{1}^{*} ?
$$

- Comparative statics with respect to income M_{0}
- Rewrite ratio of f.o.c.s as

$$
U^{\prime}\left(c_{0}\right)-\frac{1+r}{1+\delta} U^{\prime}\left(c_{1}\right)=0
$$

- Substitute c_{1} in using $c_{1}=M_{1}+\left(M_{0}-c_{0}\right)(1+r)$ to get

$$
U^{\prime}\left(c_{0}\right)-\frac{1+r}{1+\delta} U^{\prime}\left(M_{1}+\left(M_{0}-c_{0}\right)(1+r)\right)=0
$$

- Apply implicit function theorem:

$$
\frac{\partial c_{0}^{*}(r, \mathbf{M})}{\partial M_{0}}=-\frac{-\frac{1+r}{1+\delta} U^{\prime \prime}\left(c_{1}\right)(1+r)}{U^{\prime \prime}\left(c_{0}\right)-\frac{1+r}{1+\delta} U^{\prime \prime}\left(c_{1}\right) *(-(1+r))}
$$

- Denominator is always negative

- Numerator is positive
- $\partial c_{0}^{*}(r, \mathbf{M}) / \partial M_{0}>0$ - consumption at time 0 is a normal good.
- Can also show $\partial c_{0}^{*}(r, \mathbf{M}) / \partial M_{1}>0$
- Comparative statics with respect to interest rate r
- Apply implicit function theorem:

$$
\begin{aligned}
\frac{\partial c_{0}^{*}(r, \mathbf{M})}{\partial r}= & -\frac{-\frac{1}{1+\delta} U^{\prime}\left(c_{1}\right)}{U^{\prime \prime}\left(c_{0}\right)-\frac{1+r}{1+\delta} U^{\prime \prime}\left(c_{1}\right) *(-(1+r))} \\
& -\frac{-\frac{1+r}{1+\delta} U^{\prime \prime}\left(c_{1}\right) *\left(M_{0}-c_{0}\right)}{U^{\prime \prime}\left(c_{0}\right)-\frac{1+r}{1+\delta} U^{\prime \prime}\left(c_{1}\right) *(-(1+r))}
\end{aligned}
$$

- Denominator is always negative
- Numerator: First term negative (substitution eff.)
- Numerator: Second term (income effect:)
- positive if $M_{0}>c_{0}$
- negative if $M_{0}<c_{0}$

2 Altruism and Charitable Donations

- Maximize utility $=$ satisfy self-interest?
- No, not necessarily
- 2-person economy:
- Mark has income M_{M} and consumes c_{M}
- Wendy has income M_{W} and consumes c_{W}
- One good: c, with price $p=1$
- Utility function: $u(c)$, with $u^{\prime}>0, u^{\prime \prime}<0$
- Wendy is altruistic: she maximizes $u\left(c_{W}\right)+\alpha u\left(c_{M}\right)$ with $\alpha>0$
- Mark simply maximizes $u\left(c_{M}\right)$
- Wendy can give a donation of income D to Mark.
- Wendy computes the utility of Mark as a function of the donation D
- Mark maximizes

$$
\begin{aligned}
& \max _{c_{M}} u\left(c_{M}\right) \\
& \text { s.t. } c_{M} \leq M_{M}+D
\end{aligned}
$$

- Solution: $c_{M}^{*}=M_{M}+D$
- Wendy maximizes

$$
\begin{aligned}
& \max _{c_{M}, D} u\left(c_{W}\right)+\alpha u\left(M_{M}+D\right) \\
& \text { s.t. } c_{W} \leq M_{W}-D
\end{aligned}
$$

- Rewrite as:

$$
\max _{D} u\left(M_{W}-D\right)+\alpha u\left(M_{M}+D\right)
$$

- First order condition:

$$
-u^{\prime}\left(M_{W}-D^{*}\right)+\alpha u^{\prime}\left(M_{M}+D^{*}\right)=0
$$

- Second order conditions:

$$
u^{\prime \prime}\left(M_{W}-D^{*}\right)+\alpha u^{\prime \prime}\left(M_{M}+D^{*}\right)<0
$$

- Assume $\alpha=1$.
- Solution?

$$
\begin{aligned}
& -u^{\prime}\left(M_{W}-D\right)=u^{\prime}\left(M_{M}+D^{*}\right) \\
& -M_{W}-D^{*}=M_{M}+D^{*} \text { or } D^{*}=\left(M_{W}-M_{M}\right) / 2
\end{aligned}
$$

- Transfer money so as to equate incomes!
- Careful: $D<0$ (negative donation!) if $M_{M}>$ M_{W}
- Corrected maximization:

$$
\begin{aligned}
& \max _{D} u\left(M_{W}-D\right)+\alpha u\left(M_{M}+D\right) \\
& \text { s.t. } D \geq 0
\end{aligned}
$$

- Solution $(\alpha=1)$:

$$
D^{*}=\left\{\begin{array}{cc}
\left(M_{W}-M_{M}\right) / 2 & \text { if } M_{W}-M_{M}>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

- Assume interior solution. $\left(D^{*}>0\right)$
- Comparative statics 1 (altruism):

$$
\frac{\partial D^{*}}{\partial \alpha}=-\frac{u^{\prime}\left(M_{M}+D^{*}\right)}{u^{\prime \prime}\left(M_{W}-D^{*}\right)+\alpha u^{\prime \prime}\left(M_{M}+D^{*}\right)}>0
$$

- Comparative statics 2 (income of donor):

$$
\frac{\partial D^{*}}{\partial M_{W}}=-\frac{-u^{\prime \prime}\left(M_{W}+D^{*}\right)}{u^{\prime \prime}\left(M_{W}-D^{*}\right)+\alpha u^{\prime \prime}\left(M_{M}+D^{*}\right)}>0
$$

- Comparative statics 3 (income of recipient):

$$
\frac{\partial D^{*}}{\partial M_{M}}=-\frac{\alpha u^{\prime \prime}\left(M_{M}+D^{*}\right)}{u^{\prime \prime}\left(M_{W}-D^{*}\right)+\alpha u^{\prime \prime}\left(M_{M}+D^{*}\right)}<0
$$

- A quick look at the evidence
- From Andreoni (2002)

3 Next Lectures

- Introduction to Probability
- Risk Aversion
- Coefficient of risk aversion

