Economics 101A (Lecture 11)

Stefano DellaVigna

February 23, 2012

Outline

- 1. Introduction to probability
- 2. Expected Utility
- 3. Risk Aversion and Lottery
- 4. Measures of Risk Aversion
- 5. Insurance

1 Introduction to Probability

- So far deterministic world:
 - income given, known M
 - interest rate known r
- But some variables are unknown at time of decision:
 - future income M_1 ?
 - future interest rate r_1 ?

- Generalize framework to allow for uncertainty
 - Events that are truly unpredictable (weather)
 - Event that are very hard to predict (future income)

- Probability is the language of uncertainty
- Example:
 - Income M_1 at t = 1 depends on state of the economy
 - Recession $(M_1 = 20)$, Slow growth $(M_2 = 25)$, Boom $(M_3 = 30)$

– Three probabilities: p_1, p_2, p_3

$$- p_1 = P(M_1) = P(\text{recession})$$

• Properties:

$$- 0 \le p_i \le 1$$

 $- p_1 + p_2 + p_3 = 1$

• Mean income: $EM = \sum_{i=1}^{3} p_i M_i$

• If
$$(p_1, p_2, p_3) = (1/3, 1/3, 1/3)$$
,
 $EM = \frac{1}{3}20 + \frac{1}{3}25 + \frac{1}{3}30 = \frac{75}{3} = 25$

- Variance of income: $V(M) = \sum_{i=1}^{3} p_i (M_i EM)^2$
- If $(p_1, p_2, p_3) = (1/3, 1/3, 1/3)$, $V(M) = \frac{1}{3}(20 - 25)^2 + \frac{1}{3}(25 - 25)^2 + \frac{1}{3}(30 - 25)^2$ $= \frac{1}{3}5^2 + \frac{1}{3}5^2 = 2/3 * 25$
- Mean and variance if $(p_1, p_2, p_3) = (1/4, 1/2, 1/4)$?

2 Expected Utility

- Nicholson, Ch. 7, pp. 202-209 (Ch. 18, pp. 533– 541, 9th)
- Consumer at time 0 asks: what is utility in time 1?
- At t = 1 consumer maximizes $\max U(c^{1})$ $s.t. c_{i}^{1} \leq M_{i}^{1} + (1+r) (M^{0} - c^{0})$ with i = 1, 2, 3.
- What is utility at optimum at t = 1 if U' > 0?
- Assume for now $M^0 c^0 = 0$
- Utility $U\left(M_i^1\right)$
- This is uncertain, depends on which *i* is realized!

- How do we evaluate future uncertain utility?
- Expected utility

$$EU = \sum_{i=1}^{3} p_i U\left(M_i^1\right)$$

• In example:

$$EU = 1/3U(20) + 1/3U(25) + 1/3U(30)$$

- Compare with U(EC) = U(25).
- Agents prefer riskless outcome ${\cal E} M$ to uncertain outcome M if

$$1/3U(20) + 1/3U(25) + 1/3U(30) < U(25)$$
 or
 $1/3U(20) + 1/3U(30) < 2/3U(25)$ or
 $1/2U(20) + 1/2U(30) < U(25)$

• Picture

- Depends on sign of U'', on concavity/convexity
- Three cases:
 - U''(x) = 0 for all x. (linearity of U)
 * U(x) = a + bx
 * 1/2U(20) + 1/2U(30) = U(25)

-
$$U''(x) < 0$$
 for all x . (concavity of U)
* $1/2U(20) + 1/2U(30) < U(25)$

-
$$U''(x) > 0$$
 for all x . (convexity of U)
* $1/2U(20) + 1/2U(30) > U(25)$

• If U''(x) = 0 (linearity), consumer is indifferent to uncertainty

 If U''(x) < 0 (concavity), consumer dislikes uncertainty

• If U''(x) > 0 (convexity), consumer likes uncertainty

• Do consumers like uncertainty?

• Theorem. (Jensen's inequality) If a function f(x) is concave, the following inequality holds:

$$f(Ex) \ge Ef(x)$$

where ${\cal E}$ indicates expectation. If f is strictly concave, we obtain

$$f\left(Ex\right) > Ef\left(x\right)$$

- Apply to utility function U.
- Individuals dislike uncertainty:

$$U\left(Ex\right) \geq EU\left(x\right)$$

- Jensen's inequality then implies U concave $(U'' \leq 0)$
- Relate to diminishing marginal utility of income

3 Risk aversion and Lottery

• Risk aversion:

- individuals dislike uncertainty

– u concave, $u^{\prime\prime}<0$

- Implications?
 - purchase of insurance (possible accident)

- investment in risky asset (risky investment)

- choice over time (future income uncertain)

• Experiment — Are you risk-averse?

4 Measures of Risk Aversion

- Nicholson, Ch. 7, pp. 209-213 (Ch. 18, pp. 541– 545, 9th)
- How risk averse is an individual?

• Two measures:

– Absolute Risk Aversion r_A :

$$r_A = -\frac{u''(x)}{u'(x)}$$

– Relative Risk Aversion r_R :

$$r_R = -\frac{u''(x)}{u'(x)}x$$

• Examples in the Problem Set

5 Insurance

- Nicholson, Ch. 7, pp. 216–221 (18, pp. 545–551, 9th) Notice: different treatment than in class
- Individual has:
 - wealth \boldsymbol{w}
 - utility function u, with u' > 0, u'' < 0
- Probability p of accident with loss L
- Insurance offers coverage:
 - premium q for each 1 paid in case of accident
 - units of coverage purchased α

• Individual maximization:

$$\begin{array}{l} \max_{\alpha} \left(1-p\right) u \left(w-q\alpha\right) + p u \left(w-q\alpha-L+\alpha\right) \\ s.t.\alpha \geq \mathsf{0} \end{array}$$

- Assume $\alpha^* \geq \mathbf{0}$, check later
- First order conditions:

$$0 = -q (1-p) u' (w - q\alpha) + (1-q) pu' (w - q\alpha - L + \alpha)$$

or

$$\frac{u'(w-q\alpha)}{u'(w-q\alpha-L+\alpha)} = \frac{1-q}{q} \frac{p}{1-p}.$$

- Assume first q = p (insurance is fair)
- Solution for $\alpha^* = ?$

- $\alpha^* > 0$, so we are ok!
- What if q > p (insurance needs to cover operating costs)?

• Insurance will be only partial (if at all): $\alpha^* < L$

• Exercise: Check second order conditions!

6 Next Lectures

- Risk aversion
- Applications:
 - Portfolio choice
 - Consumption choice II