Economics 101A (Lecture 12)

Stefano DellaVigna

February 28, 2012

Outline

- 1. Mid-Term Feedback
- 2. Measures of Risk Aversion
- 3. Insurance
- 4. Investment in Risky Asset
- 5. Time Consistency

1 Mid-Term Feedback

• Thanks for the feedback!

2 Measures of Risk Aversion

- Nicholson, Ch. 7, pp. 209-213 (Ch. 18, pp. 541– 545, 9th)
- How risk averse is an individual?

• Two measures:

– Absolute Risk Aversion r_A :

$$r_A = -\frac{u''(x)}{u'(x)}$$

- Relative Risk Aversion r_R :

$$r_R = -\frac{u''(x)}{u'(x)}x$$

• Examples in the Problem Set

3 Insurance

- Nicholson, Ch. 7, pp. 216–221 (18, pp. 545–551, 9th) Notice: different treatment than in class
- Individual has:
 - wealth \boldsymbol{w}
 - utility function u, with u' > 0, u'' < 0
- Probability p of accident with loss L
- Insurance offers coverage:
 - premium q for each 1 paid in case of accident
 - units of coverage purchased α

• Individual maximization:

$$egin{aligned} & \max \left(1-p
ight) u \left(w-q lpha
ight) + p u \left(w-q lpha -L+lpha
ight) \ & s.t. lpha \geq \mathsf{0} \end{aligned}$$

- Assume $\alpha^* \geq \mathbf{0}$, check later
- First order conditions:

$$0 = -q (1-p) u' (w - q\alpha) + (1-q) pu' (w - q\alpha - L + \alpha)$$

or

$$\frac{u'(w-q\alpha)}{u'(w-q\alpha-L+\alpha)} = \frac{1-q}{q} \frac{p}{1-p}.$$

- Assume first q = p (insurance is fair)
- Solution for $\alpha^* = ?$

- $\alpha^* > 0$, so we are ok!
- What if q > p (insurance needs to cover operating costs)?

• Insurance will be only partial (if at all): $\alpha^* < L$

• Exercise: Check second order conditions!

4 Investment in Risk Asset

- Individual has:
 - wealth \boldsymbol{w}
 - utility function u, with u' > 0
- Two possible investments:
 - Asset B (bond) yields return 1 for each dollar
 - Asset S (stock) yields uncertain return (1 + r):
 - $* r = r_+ > 0$ with probability p
 - * $r = r_{-} < 0$ with probability 1 p
 - * $Er = pr_{+} + (1 p)r_{-} > 0$
- Share of wealth invested in stock ${\rm S}=\alpha$

• Individual maximization:

$$\begin{aligned} \max_{\alpha} \left(1-p\right) u\left(w\left[\left(1-\alpha\right)+\alpha\left(1+r_{-}\right)\right]\right) + \\ +pu\left(w\left[\left(1-\alpha\right)+\alpha\left(1+r_{+}\right)\right]\right) \\ s.t. & 0 \leq \alpha \leq 1 \end{aligned}$$

- Case of risk neutrality: u(x) = a + bx, b > 0
- Assume a = 0 (no loss of generality)
- Maximization becomes

$$\max_{\alpha} b\left(1-p\right) \left(w\left[1+\alpha r_{-}\right]\right) + bp\left(w\left[1+\alpha r_{+}\right]\right)$$
 or

$$\max_{\alpha} bw + \alpha bw \left[(1-p) r_{-} + pr_{+} \right]$$

- Sign of term in square brackets? Positive!
- Set $\alpha^* = 1$

- Case of risk aversion: u'' < 0
- Assume $\mathbf{0} \leq \alpha^* \leq \mathbf{1}$, check later
- First order conditions:

$$0 = (1-p)(wr_{-})u'(w[1+\alpha r_{-}]) + p(wr_{+})u'(w[1+\alpha r_{+}])$$

• Can
$$\alpha^* = 0$$
 be solution?

- Solution is $\alpha^* > 0$ (positive investment in stock)
- Exercise: Check s.o.c.

5 Time consistency

- Intertemporal choice
- Three periods, t = 0, t = 1, and t = 2

- At each period *i*, agents:
 - have income $M'_i = M_i + \text{savings/debts}$ from previous period
 - choose consumption c_i ;
 - can save/borrow $M'_i c_i$
 - no borrowing in last period: at $t = 2 M'_2 = c_2$

• Utility function at t = 0 $u(c_0, c_1, c_2) = U(c_0) + \frac{1}{1+\delta}U(c_1) + \frac{1}{(1+\delta)^2}U(c_2)$

• Utility function at t = 1

$$u(c_1, c_2) = U(c_1) + \frac{1}{1+\delta}U(c_2)$$

• Utility function at t = 2

$$u(c_2) = U(c_2)$$

• U' > 0, U'' < 0

• Question: Do preferences of agent in period 0 agree with preferences of agent in period 1?

• Period 1.

• Budget constraint at t = 1:

$$c_1 + \frac{1}{1+r}c_2 \le M_1' + \frac{1}{1+r}M_2$$

• Maximization problem:

$$\max U(c_1) + \frac{1}{1+\delta}U(c_2)$$

s.t. $c_1 + \frac{1}{1+r}c_2 \le M'_1 + \frac{1}{1+r}M_2$

- First order conditions:
- Ratio of f.o.c.s:

$$\frac{U'(c_1)}{U'(c_2)} = \frac{1+r}{1+\delta}$$

- Back to **period 0**.
- Agent at time 0 can commit to consumption at time
 1 as function of uncertain income M₁.
- Anticipated budget constraint at t = 1:

$$c_1 + \frac{1}{1+r}c_2 \le M_1' + \frac{1}{1+r}M_2$$

• Maximization problem:

$$\max U(c_0) + \frac{1}{1+\delta}U(c_1) + \frac{1}{(1+\delta)^2}U(c_2)$$

s.t. $c_1 + \frac{1}{1+r}c_2 \le M'_1 + \frac{1}{1+r}M_2$

- First order conditions:
- Ratio of f.o.c.s:

$$\frac{U'(c_1)}{U'(c_2)} = \frac{1+r}{1+\delta}$$

- The two conditions coincide!
- **Time consistency.** Plans for future coincide with future actions.
- To see why, rewrite utility function $u(c_0, c_1, c_2)$:

$$U(c_0) + \frac{1}{1+\delta}U(c_1) + \frac{1}{(1+\delta)^2}U(c_2)$$

= $U(c_0) + \frac{1}{1+\delta}\left[U(c_1) + \frac{1}{1+\delta}U(c_2)\right]$

- Expression in brackets coincides with utility at t = 1
- Is time consistency right?
 - addictive products (alcohol, drugs);
 - good actions (exercising, helping friends);
 - immediate gratification (shopping, credit card borrowing)

6 Next lecture and beyond

- Time Inconsistency
- Production Function