Economics 101A (Lecture 20)

Stefano DellaVigna

April 3, 2012

Outline

1. Game Theory

2. Oligopoly: Cournot
3. Oligopoly: Bertrand

1 Game Theory

- Nicholson, Ch. 8, pp. 236-252 (better than Ch. 15, pp. 440-449, 9th).
- Unfortunate name
- Game theory: study of decisions when payoff of player i depends on actions of player j.
- Brief history:
- von Neuman and Morgenstern, Theory of Games and Economic Behavior (1944)
- Nash, Non-cooperative Games (1951)
- ...
- Nobel Prize to Nash, Harsanyi (Berkeley), Selten (1994)

- Definitions:

- Players: $1, \ldots, I$
- Strategy $s_{i} \in S_{i}$
- Payoffs: $U_{i}\left(s_{i}, s_{-i}\right)$
- Example: Prisoner's Dilemma
$-I=2$
$-s_{i}=\{D, N D\}$
- Payoffs matrix:

$$
\begin{array}{ccc}
1 \backslash 2 & D & N D \\
D & -4,-4 & -1,-5 \\
N D & -5,-1 & -2,-2
\end{array}
$$

- What prediction?
- Maximize sum of payoffs?
- Choose dominant strategies
- Equilibrium in dominant stategies
- Strategies $s^{*}=\left(s_{i}^{*}, s_{-i}^{*}\right)$ are an Equilibrium in dominant stategies if

$$
U_{i}\left(s_{i}^{*}, s_{-i}\right) \geq U_{i}\left(s_{i}, s_{-i}\right)
$$

for all $s_{i} \in S_{i}$, for all $s_{-i} \in S_{-i}$ and all $i=1, \ldots, I$

- Battle of the Sexes game:

He \She Ballet Football
Ballet 2,1 0,0
Football $0,0 \quad 1,2$

- Choose dominant strategies? Do not exist
- Nash Equilibrium.
- Strategies $s^{*}=\left(s_{i}^{*}, s_{-i}^{*}\right)$ are a Nash Equilibrium if

$$
U_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geq U_{i}\left(s_{i}, s_{-i}^{*}\right)
$$

for all $s_{i} \in S_{i}$ and $i=1, \ldots, I$

- Is Nash Equilibrium unique?

- Does it always exist?
- Penalty kick in soccer (matching pennies)

- Equilibrium always exists in mixed strategies σ
- Mixed strategy: allow for probability distibution.
- Back to penalty kick:
- Kicker kicks left with probability k
- Goalie kicks left with probability g
- utility for kicker of playing L :

$$
\begin{aligned}
U_{K}(L, \sigma) & =g U_{K}(L, L)+(1-g) U_{K}(L, R) \\
& =(1-g)
\end{aligned}
$$

- utility for kicker of playing R :

$$
\begin{aligned}
U_{K}(R, \sigma) & =g U_{K}(R, L)+(1-g) U_{K}(R, R) \\
& =g
\end{aligned}
$$

- Optimum?

$$
\begin{aligned}
& -L \succ R \text { if } 1-g>g \text { or } g<1 / 2 \\
& -R \succ L \text { if } 1-g<g \text { or } g>1 / 2 \\
& -L \sim R \text { if } 1-g=g \text { or } g=1 / 2
\end{aligned}
$$

- Plot best response for kicker
- Plot best response for goalie
- Nash Equilibrium is:
- fixed point of best response correspondence
- crossing of best response correspondences

2 Oligopoly: Cournot

- Nicholson, Ch. 14, pp. 524-530 (better than Ch. 14, pp. 418-419, 421-422, 9th)
- Back to oligopoly maximization problem
- Assume 2 firms, cost $c_{i}\left(y_{i}\right)=c y_{i}, i=1,2$
- Firms choose simultaneously quantity y_{i}
- Firm i maximizes:

$$
\max _{y_{i}} p\left(y_{i}+y_{-i}\right) y_{i}-c y_{i} .
$$

- First order condition with respect to y_{i} :

$$
p_{Y}^{\prime}\left(y_{i}^{*}+y_{-i}^{*}\right) y_{i}^{*}+p-c=0, i=1,2 .
$$

- Nash equilibrium:
- y_{1} optimal given y_{2};
- y_{2} optimal given y_{1}.
- Solve equations:

$$
\begin{gathered}
p_{Y}^{\prime}\left(y_{1}^{*}+y_{2}^{*}\right) y_{1}^{*}+p-c=0 \text { and } \\
p_{Y}^{\prime}\left(y_{2}^{*}+y_{1}^{*}\right) y_{2}^{*}+p-c=0 .
\end{gathered}
$$

- Cournot -> Pricing above marginal cost
- Numerical example -> Problem set 5

3 Oligopoly: Bertrand

- Cournot oligopoly: firms choose quantities
- Bertrand oligopoly: firms first choose prices, and then produce quantity demanded by market
- Market demand function $Y(p)$
- 2 firms
- Profits:

$$
\pi_{i}\left(p_{i}, p_{-i}\right)=\left\{\begin{array}{cll}
\left(p_{i}-c\right) Y\left(p_{i}\right) & \text { if } & p_{i}<p_{-i} \\
\left(p_{i}-c\right) Y\left(p_{i}\right) / 2 & \text { if } & p_{i}=p_{-i} \\
0 & \text { if } & p_{i}>p_{-i}
\end{array}\right.
$$

- First show that $p_{1}=c=p_{2}$ is Nash Equilibrium
- Does any firm have a (strict) incentive to deviate?
- Check profits for Firm 1
- Symmetric argument for Firm 2
- Second, show that this equilibrium is unique.
- For each of the next 5 cases at least on firm has a profitable deviation
- Case 1. $p_{1}>p_{2}>c$
- Case 2. $p_{1}=p_{2}>c$
- Case 3. $p_{1}>c \geq p_{2}$
- Case 4. $c>p_{1} \geq p_{2}$
- Case 5. $p_{1}=c>p_{2}$
- Only Case 6 remains: $p_{1}=c=p_{2}$, which is Nash Equilibrium
- It is unique!
- Notice:
- To show that something is an equilibrium $->$ Show that there is *no* profitable deviation
- To show that something is *not* an equilibrium $->$ Show that there is *one* profitable deviation

- Surprising result of Bertrand Competition

- Marginal cost pricing
- Two firms are enough to guarantee perfect competition!
- Realistic? Price wars between PC makers

4 Next lecture

- Oligopoly: Bertrand
- Dynamic games
- Stackelberg duopoly
- Auctions

