Economics 101A (Lecture 22)

Stefano DellaVigna

April 12, 2012

Outline

1. Dynamic Games

2. Oligopoly: Stackelberg
3. General Equilibrium: Introduction
4. Edgeworth Box: Pure Exchange

1 Dynamic Games

- Nicholson, Ch. 8, pp. 255-266 (better than Ch. 15, pp. 449-454, 9th)
- Dynamic games: one player plays after the other
- Decision trees
- Decision nodes
- Strategy is a plan of action at each decision node
- Example: battle of the sexes game

$$
\begin{array}{ccc}
\text { She } \backslash \text { He } & \text { Ballet } & \text { Football } \\
\text { Ballet } & 2,1 & 0,0 \\
\text { Football } & 0,0 & 1,2
\end{array}
$$

- Dynamic version: she plays first
- Subgame-perfect equilibrium. At each node of the tree, the player chooses the strategy with the highest payoff, given the other players' strategy
- Backward induction. Find optimal action in last period and then work backward
- Solution
- Example 2: Entry Game

$$
\begin{array}{ccc}
1 \backslash 2 & \text { Enter } & \text { Do not Enter } \\
\text { Enter } & -1,-1 & 10,0 \\
\text { Do not Enter } & 0,5 & 0,0
\end{array}
$$

- Exercise. Dynamic version.
- Coordination games solved if one player plays first
- Can use this to study finitely repeated games
- Suppose we play the prisoner's dilemma game ten times.

$$
\begin{array}{ccc}
1 \backslash 2 & D & N D \\
D & -4,-4 & -1,-5 \\
N D & -5,-1 & -2,-2
\end{array}
$$

- What is the subgame perfect equilibrium?
- The result differs if infinite repetition with a probability of terminating
- Can have cooperation
- Strategy of repeated game:
- Cooperate (ND) as long as opponent always cooperate
- Defect (D) forever after first defection
- Theory of repeated games: Econ. 104

2 Oligopoly: Stackelberg

- Nicholson, Ch. 15, pp. 543-545 (better than Ch. 14, pp. 423-424, 9th)
- Setting as in problem set
- 2 Firms
- Cost: $c(y)=c y$, with $c>0$
- Demand: $p(Y)=a-b Y$, with $a>c>0$ and $b>0$
- Difference: Firm 1 makes the quantity decision first
- Use subgame perfect equilibrium
- Solution:
- Solve first for Firm 2 decision as function of Firm 1 decision:

$$
\max _{y_{2}}\left(a-b y_{2}-b y_{1}^{*}\right) y_{2}-c y_{2}
$$

- F.o.c.: $a-2 b y_{2}^{*}-b y_{1}^{*}-c=0$
- Firm 2 best response function:

$$
y_{2}^{*}=\frac{a-c}{2 b}-\frac{y_{1}^{*}}{2}
$$

- Firm 1 takes this response into account in the maximization:

$$
\max _{y_{1}}\left(a-b y_{1}-b y_{2}^{*}\left(y_{1}\right)\right) y_{1}-c y_{1}
$$

or

$$
\max _{y_{1}}\left(a-b y_{1}-b\left(\frac{a-c}{2 b}-\frac{y_{1}}{2}\right)\right) y_{1}-c y_{1}
$$

- F.o.c.:

$$
a-2 b y_{1}-\frac{(a-c)}{2}+b y_{1}-c=0
$$

or

$$
y_{1}^{*}=\frac{a-c}{2 b}
$$

and

$$
y_{2}^{*}=\frac{a-c}{2 b}-\frac{y_{1}^{*}}{2}=\frac{a-c}{2 b}-\frac{a-c}{4 b}=\frac{a-c}{4 b}
$$

- Total production:

$$
Y_{D}^{*}=y_{1}^{*}+y_{2}^{*}=3 \frac{a-c}{4 b}
$$

- Price equals

$$
p^{*}=a-b\left(\frac{3}{4} \frac{a-c}{b}\right)=\frac{1}{4} a+\frac{3}{4} c
$$

- Compare to monopoly:

$$
y_{M}^{*}=\frac{a-c}{2 b}
$$

and

$$
p_{M}^{*}=\frac{a+c}{2}
$$

- Compare to Cournot:

$$
Y_{D}^{*}=y_{1}^{*}+y_{2}^{*}=2 \frac{a-c}{3 b}
$$

and

$$
p_{D}^{*}=\frac{1}{3} a+\frac{2}{3} c .
$$

- Compare with Cournot outcome
- Firm 2 best response function:

$$
y_{2}^{*}=\frac{a-c}{2 b}-\frac{y_{1}^{*}}{2}
$$

- Firm 1 best response function:

$$
y_{1}^{*}=\frac{a-c}{2 b}-\frac{y_{2}^{*}}{2}
$$

- Intersection gives Cournot
- Stackelberg: Equilibrium is point on Best Response of Firm 2 that maximizes profits of Firm 1
- Plot iso-profit curve of Firm 1:

$$
\bar{\Pi}_{1}=(a-c) y_{1}-b y_{1} y_{2}-b y_{1}^{2}
$$

- Solve for y_{2} along iso-profit:

$$
y_{2}=\frac{a-c}{b}-y_{1}-\frac{\bar{\Pi}_{1}}{b y_{1}}
$$

- Iso-profit curve is flat for

$$
\frac{d y_{2}}{d y_{1}}=-1+\frac{\bar{\Pi}}{b\left(y_{1}\right)^{2}}=0
$$

or

$$
y_{1}=
$$

Figure

3 General Equilibrium: Introduction

- So far, we looked at consumers
- Demand for goods
- Choice of leisure and work
- Choice of risky activities
- We also looked at producers:
- Production in perfectly competitive firm
- Production in monopoly
- Production in oligopoly
- We also combined consumers and producers:
- Supply
- Demand
- Market equilibrium
- Partial equilibrium: one good at a time
- General equilibrium: Demand and supply for all goods!
- supply of young worker $\uparrow \Longrightarrow$ wage of experienced workers?
- minimum wage $\uparrow \Longrightarrow$ effect on higher earners?
- steel tariff $\uparrow \Longrightarrow$ effect on car price

4 Edgeworth Box: Pure Exchange

- Nicholson, Ch. 13, pp. 441-444, 476-478 (Ch. 12, pp. 335-338, 369-370, 9th)
- 2 consumers in economy: $i=1,2$
- 2 goods, x_{1}, x_{2}
- Endowment of consumer $i, \operatorname{good} j: \omega_{j}^{i}$
- Total endowment: $\left(\omega_{1}, \omega_{2}\right)=\left(\omega_{1}^{1}+\omega_{1}^{2}, \omega_{2}^{1}+\omega_{2}^{2}\right)$
- No production here. With production (as in book), $\left(\omega_{1}, \omega_{2}\right)$ are optimally produced

- Edgeworth box

- Draw preferences of agent 1
- Draw preferences of agent 2
- Consumption of consumer $i, \operatorname{good} j: x_{j}^{i}$
- Feasible consumption:

$$
x_{i}^{1}+x_{i}^{2} \leq \omega_{i} \text { for all } i
$$

- If preferences monotonic, $x_{i}^{1}+x_{i}^{2}=\omega_{i}$ for all i
- Can map consumption levels into box

5 Next lecture

- General Equilibrium
- Barter
- Lecture on Economics of the Media with Nancy Tellem

