Economics 101A (Lecture 22)

Stefano DellaVigna

April 12, 2012

Outline

- 1. Dynamic Games
- 2. Oligopoly: Stackelberg
- 3. General Equilibrium: Introduction
- 4. Edgeworth Box: Pure Exchange

1 Dynamic Games

- Nicholson, Ch. 8, pp. 255-266 (better than Ch. 15, pp. 449-454, 9th)
- Dynamic games: one player plays after the other
- Decision trees
 - Decision nodes
 - Strategy is a plan of action at each decision node

• Example: battle of the sexes game

$$\begin{array}{cccc} \text{She} \setminus \text{He} & \text{Ballet} & \text{Football} \\ & \text{Ballet} & 2,1 & 0,0 \\ & \text{Football} & 0,0 & 1,2 \end{array}$$

• Dynamic version: she plays first

- **Subgame-perfect equilibrium.** At each node of the tree, the player chooses the strategy with the highest payoff, given the other players' strategy
- Backward induction. Find optimal action in last period and then work backward
- Solution

• Example 2: Entry Game

$$\begin{array}{cccc} 1 \setminus 2 & \text{Enter} & \text{Do not Enter} \\ & \text{Enter} & -1, -1 & 10, 0 \\ \text{Do not Enter} & 0, 5 & 0, 0 \end{array}$$

• Exercise. Dynamic version.

• Coordination games solved if one player plays first

- Can use this to study finitely repeated games
- Suppose we play the prisoner's dilemma game ten times.

• What is the subgame perfect equilibrium?

- The result differs if infinite repetition with a probability of terminating
- Can have cooperation
- Strategy of repeated game:
 - Cooperate (ND) as long as opponent always cooperate
 - Defect (D) forever after first defection
- Theory of repeated games: Econ. 104

2 Oligopoly: Stackelberg

- Nicholson, Ch. 15, pp. 543-545 (better than Ch. 14, pp. 423-424, 9th)
- Setting as in problem set
- 2 Firms
- Cost: c(y) = cy, with c > 0
- ullet Demand: p(Y) = a bY, with a > c > 0 and b > 0
- Difference: Firm 1 makes the quantity decision first
- Use subgame perfect equilibrium

- Solution:
- Solve first for Firm 2 decision as function of Firm 1 decision:

$$\max_{y_2} (a - by_2 - by_1^*) y_2 - cy_2$$

- F.o.c.: $a 2by_2^* by_1^* c = 0$
- Firm 2 best response function:

$$y_2^* = \frac{a-c}{2b} - \frac{y_1^*}{2}.$$

• Firm 1 takes this response into account in the maximization:

$$\max_{y_1} (a - by_1 - by_2^*(y_1)) y_1 - cy_1$$

or

$$\max_{y_1} \left(a - by_1 - b\left(\frac{a-c}{2b} - \frac{y_1}{2}\right)\right) y_1 - cy_1$$

• F.o.c.:

$$a - 2by_1 - \frac{(a-c)}{2} + by_1 - c = 0$$

or

$$y_1^* = \frac{a-c}{2b}$$

and

$$y_2^* = \frac{a-c}{2b} - \frac{y_1^*}{2} = \frac{a-c}{2b} - \frac{a-c}{4b} = \frac{a-c}{4b}.$$

• Total production:

$$Y_D^* = y_1^* + y_2^* = 3\frac{a-c}{4b}$$

• Price equals

$$p^* = a - b\left(\frac{3a - c}{4b}\right) = \frac{1}{4}a + \frac{3}{4}c$$

Compare to monopoly:

$$y_M^* = \frac{a - c}{2b}$$

and

$$p_M^* = \frac{a+c}{2}.$$

• Compare to Cournot:

$$Y_D^* = y_1^* + y_2^* = 2\frac{a-c}{3b}$$

and

$$p_D^* = \frac{1}{3}a + \frac{2}{3}c.$$

- Compare with Cournot outcome
- Firm 2 best response function:

$$y_2^* = \frac{a-c}{2b} - \frac{y_1^*}{2}$$

• Firm 1 best response function:

$$y_1^* = \frac{a-c}{2b} - \frac{y_2^*}{2}$$

• Intersection gives Cournot

- Stackelberg: Equilibrium is point on Best Response of Firm 2 that maximizes profits of Firm 1
- Plot iso-profit curve of Firm 1:

$$\bar{\Pi}_1 = (a-c)y_1 - by_1y_2 - by_1^2$$

• Solve for y_2 along iso-profit:

$$y_2 = \frac{a-c}{b} - y_1 - \frac{\overline{\Pi}_1}{by_1}$$

Iso-profit curve is flat for

$$\frac{dy_2}{dy_1} = -1 + \frac{\bar{\Pi}}{b(y_1)^2} = 0$$

or

$$y_1 =$$

Figure

3 General Equilibrium: Introduction

- So far, we looked at consumers
 - Demand for goods
 - Choice of leisure and work
 - Choice of risky activities

- We also looked at producers:
 - Production in perfectly competitive firm
 - Production in monopoly
 - Production in oligopoly

•	We also combined consumers and producers:
	Supply
	Demand
	– Market equilibrium
•	Partial equilibrium: one good at a time
•	General equilibrium: Demand and supply for all goods!
	 supply of young worker↑ ⇒ wage of experienced workers?
	 minimum wage↑ ⇒ effect on higher earners?
	 steel tariff↑ ⇒ effect on car price

4 Edgeworth Box: Pure Exchange

- Nicholson, Ch. 13, pp. 441-444, 476-478 (Ch. 12, pp. 335-338, 369-370, 9th)
- 2 consumers in economy: i = 1, 2
- 2 goods, x_1, x_2
- ullet Endowment of consumer $i, \ \mathrm{good} \ j \colon \omega_j^i$
- Total endowment: $(\omega_1, \omega_2) = (\omega_1^1 + \omega_1^2, \omega_2^1 + \omega_2^2)$
- No production here. With production (as in book), (ω_1, ω_2) are optimally produced

• Edgeworth box

• Draw preferences of agent 1

• Draw preferences of agent 2

- ullet Consumption of consumer i, good j: x_j^i
- Feasible consumption:

$$x_i^1 + x_i^2 \le \omega_i$$
 for all i

- \bullet If preferences monotonic, $x_i^1+x_i^2=\omega_i$ for all i
- Can map consumption levels into box

5 Next lecture

- General Equilibrium
- Barter
- Lecture on Economics of the Media with Nancy Tellem