Economics 101A (Lecture 23)

Stefano DellaVigna

April 17, 2012

Outline

- 1. General Equilibrium: Introduction
- 2. Edgeworth Box: Pure Exchange
- 3. Barter
- 4. Walrasian Equilibrium

1 General Equilibrium: Introduction

- So far, we looked at consumers
 - Demand for goods
 - Choice of leisure and work
 - Choice of risky activities

- We also looked at producers:
 - Production in perfectly competitive firm
 - Production in monopoly
 - Production in oligopoly

•	We also combined consumers and producers:
	Supply
	Demand
	– Market equilibrium
•	Partial equilibrium: one good at a time
•	General equilibrium: Demand and supply for all goods!
	– supply of young worker↑ ⇒ wage of experienced workers?
	– minimum wage↑ ⇒ effect on higher earners?
	 steel tariff↑ ⇒ effect on car price

2 Edgeworth Box: Pure Exchange

- Nicholson, Ch. 13, pp. 441-444, 476-478 (Ch. 12, pp. 335-338, 369-370, 9th)
- ullet 2 consumers in economy: i=1,2
- 2 goods, x_1, x_2
- ullet Endowment of consumer $i, \ \mathrm{good} \ j \colon \omega_j^i$
- Total endowment: $(\omega_1, \omega_2) = (\omega_1^1 + \omega_1^2, \omega_2^1 + \omega_2^2)$
- No production here. With production (as in book), (ω_1, ω_2) are optimally produced

• Edgeworth box

• Draw preferences of agent 1

• Draw preferences of agent 2

- ullet Consumption of consumer i, good j: x^i_j
- Feasible consumption:

$$x_i^1 + x_i^2 \le \omega_i$$
 for all i

- \bullet If preferences monotonic, $x_i^1+x_i^2=\omega_i$ for all i
- Can map consumption levels into box

3 Barter

• Consumers can trade goods 1 and 2

- Allocation $((x_1^{1*}, x_2^{1*}), (x_1^{2*}, x_2^{2*}))$ can be outcome of barter if:
- Individual rationality.

$$u_i(x_1^{i*}, x_2^{i*}) \ge u_i(\omega_1^i, \omega_2^i)$$
 for all i

• Pareto Efficiency. There is no allocation $((\hat{x}_1^1, \hat{x}_2^1), (\hat{x}_1^2, \hat{x}_2^2))$ such that

$$u_i(\hat{x}_1^i, \hat{x}_2^i) \ge u_i(x_1^{i*}, x_2^{i*})$$
 for all i

with strict inequality for at least one agent.

- Barter outcomes in Edgeworth box
- Endowments (ω_1, ω_2)

- Area that satisfies individual rationality condition
- Points that satisfy pareto efficiency

• Pareto set. Set of points where indifference curves are tangent

•	Contract curve. Subset of Pareto set inside the individually rational area.
•	Contract curve = Set of barter equilibria
•	Multiple equilibria. Depends on bargaining power.
•	Bargaining is time- and information-intensive procedure
•	What if there are prices instead?

4 Walrasian Equilibrium

- Prices p_1, p_2
- Consumer 1 faces a budget set:

$$p_1 x_1^1 + p_2 x_2^1 \le p_1 \omega_1^1 + p_2 \omega_2^1$$

- How about consumer 2?
- Budget set of consumer 2:

$$\begin{aligned} p_1 x_1^2 + p_2 x_2^2 &\leq p_1 \omega_1^2 + p_2 \omega_2^2 \\ \text{or (assuming } x_i^1 + x_i^2 &= \omega_i) \\ p_1(\omega_1 - x_1^1) + p_2\left(\omega_2 - x_2^1\right) &\leq p_1\left(\omega_1 - \omega_1^1\right) + p_2\left(\omega_2 - \omega_2^1\right) \\ \text{or} \end{aligned}$$

$$p_1 x_1^1 + p_2 x_2^1 \ge p_1 \omega_1^1 + p_2 \omega_2^1$$

• Walrasian Equilibrium. $((x_1^{1*}, x_2^{1*}), (x_1^{2*}, x_2^{2*}), p_1^*, p_2^*)$ is a Walrasian Equilibrium if:

Each consumer maximizes utility subject to budget constraint:

$$\begin{array}{rcl} (x_1^{i*}, x_2^{i*}) & = & \arg\max_{x_1^i, x_2^i} u_i \left((x_1^i, x_2^i) \right. \\ \\ s.t. \; p_1^* x_1^i + p_2^* x_2^i & \leq & p_1^* \omega_1^i + p_2^* \omega_2^i \end{array}$$

- All markets clear:

$$x_j^{1*} + x_j^{2*} \le \omega_j^1 + \omega_j^2$$
 for all j .

- Compare with partial (Marshallian) equilibrium:
 - each consumer maximizes utility
 - market for good i clears.
 - (no requirement that all markets clear)

• How do we find the Walrasian Equilibria?

• Graphical method.

- 1. Compute first for each consumer set of utilitymaximizing points as function of prices
- 2. Check that market-clearing condition holds

- Step 1. Compute optimal points as prices p_1 and p_2 vary
- Start with Consumer 1. Find points of tangency between budget sets and indifference curves
- Figure

• Offer curve for consumer 1:

$$(x_1^{1*}(p_1, p_2, (\omega_1, \omega_2)), x_2^{1*}(p_1, p_2, (\omega_1, \omega_2)))$$

• Offer curve is set of points that maximize utility as function of prices p_1 and p_2 .

• Then find offer curve for consumer 2:

$$(x_1^{2*}(p_1, p_2, (\omega_1, \omega_2)), x_2^{2*}(p_1, p_2, (\omega_1, \omega_2)))$$

Figure

- Step 2. Find intersection(s) of two offer curves
- Walrasian Equilibrium is intersection of the two offer curves!
 - Both individuals maximize utility given prices
 - Total quantity demanded equals total endowment

•	Relate Walrasian Equilibrium to barter equilbrium.
•	Walrasian Equilibrium is a subset of barter equilibrium: - Does WE satisfy Individual Rationality condition?
	 Does WE satisfy the Pareto Efficiency condition?
•	Walrasian Equilibrium therefore picks one (or more) point(s) on contract curve.

5 Next lecture

- Example of Walrasian Equilibrium
- Theorems on welfare