Economics 101A (Lecture 23)

Stefano DellaVigna

April 17, 2012

Outline

1. General Equilibrium: Introduction

2. Edgeworth Box: Pure Exchange
3. Barter

4. Walrasian Equilibrium

1 General Equilibrium: Introduction

- So far, we looked at consumers
- Demand for goods
- Choice of leisure and work
- Choice of risky activities
- We also looked at producers:
- Production in perfectly competitive firm
- Production in monopoly
- Production in oligopoly
- We also combined consumers and producers:
- Supply
- Demand
- Market equilibrium
- Partial equilibrium: one good at a time
- General equilibrium: Demand and supply for all goods!
- supply of young worker $\uparrow \Longrightarrow$ wage of experienced workers?
- minimum wage $\uparrow \Longrightarrow$ effect on higher earners?
- steel tariff $\uparrow \Longrightarrow$ effect on car price

2 Edgeworth Box: Pure Exchange

- Nicholson, Ch. 13, pp. 441-444, 476-478 (Ch. 12, pp. 335-338, 369-370, 9th)
- 2 consumers in economy: $i=1,2$
- 2 goods, x_{1}, x_{2}
- Endowment of consumer $i, \operatorname{good} j: \omega_{j}^{i}$
- Total endowment: $\left(\omega_{1}, \omega_{2}\right)=\left(\omega_{1}^{1}+\omega_{1}^{2}, \omega_{2}^{1}+\omega_{2}^{2}\right)$
- No production here. With production (as in book), $\left(\omega_{1}, \omega_{2}\right)$ are optimally produced

- Edgeworth box

- Draw preferences of agent 1
- Draw preferences of agent 2
- Consumption of consumer $i, \operatorname{good} j: x_{j}^{i}$
- Feasible consumption:

$$
x_{i}^{1}+x_{i}^{2} \leq \omega_{i} \text { for all } i
$$

- If preferences monotonic, $x_{i}^{1}+x_{i}^{2}=\omega_{i}$ for all i
- Can map consumption levels into box

3 Barter

- Consumers can trade goods 1 and 2
- Allocation $\left(\left(x_{1}^{1 *}, x_{2}^{1 *}\right),\left(x_{1}^{2 *}, x_{2}^{2 *}\right)\right)$ can be outcome of barter if:
- Individual rationality.

$$
u_{i}\left(x_{1}^{i *}, x_{2}^{i *}\right) \geq u_{i}\left(\omega_{1}^{i}, \omega_{2}^{i}\right) \text { for all } i
$$

- Pareto Efficiency. There is no allocation $\left(\left(\hat{x}_{1}^{1}, \hat{x}_{2}^{1}\right),\left(\hat{x}_{1}^{2}, \hat{x}_{2}^{2}\right)\right)$ such that

$$
u_{i}\left(\hat{x}_{1}^{i}, \hat{x}_{2}^{i}\right) \geq u_{i}\left(x_{1}^{i *}, x_{2}^{i *}\right) \text { for all } i
$$

with strict inequality for at least one agent.

- Barter outcomes in Edgeworth box
- Endowments $\left(\omega_{1}, \omega_{2}\right)$
- Area that satisfies individual rationality condition
- Points that satisfy pareto efficiency
- Pareto set. Set of points where indifference curves are tangent
- Contract curve. Subset of Pareto set inside the individually rational area.
- Contract curve $=$ Set of barter equilibria
- Multiple equilibria. Depends on bargaining power.
- Bargaining is time- and information-intensive procedure
- What if there are prices instead?

4 Walrasian Equilibrium

- Prices p_{1}, p_{2}
- Consumer 1 faces a budget set:

$$
p_{1} x_{1}^{1}+p_{2} x_{2}^{1} \leq p_{1} \omega_{1}^{1}+p_{2} \omega_{2}^{1}
$$

- How about consumer 2?
- Budget set of consumer 2 :

$$
\begin{aligned}
& \qquad p_{1} x_{1}^{2}+p_{2} x_{2}^{2} \leq p_{1} \omega_{1}^{2}+p_{2} \omega_{2}^{2} \\
& \text { or }\left(\text { assuming } x_{i}^{1}+x_{i}^{2}=\omega_{i}\right) \\
& p_{1}\left(\omega_{1}-x_{1}^{1}\right)+p_{2}\left(\omega_{2}-x_{2}^{1}\right) \leq p_{1}\left(\omega_{1}-\omega_{1}^{1}\right)+p_{2}\left(\omega_{2}-\omega_{2}^{1}\right) \\
& \text { or } \\
& \qquad p_{1} x_{1}^{1}+p_{2} x_{2}^{1} \geq p_{1} \omega_{1}^{1}+p_{2} \omega_{2}^{1}
\end{aligned}
$$

- Walrasian Equilibrium. $\left(\left(x_{1}^{1 *}, x_{2}^{1 *}\right),\left(x_{1}^{2 *}, x_{2}^{2 *}\right), p_{1}^{*}, p_{2}^{*}\right)$ is a Walrasian Equilibrium if:
- Each consumer maximizes utility subject to budget constraint:

$$
\begin{aligned}
\left(x_{1}^{i *}, x_{2}^{i *}\right) & =\arg \max _{x_{1}^{i}, x_{2}^{i}} u_{i}\left(\left(x_{1}^{i}, x_{2}^{i}\right)\right. \\
\text { s.t. } p_{1}^{*} x_{1}^{i}+p_{2}^{*} x_{2}^{i} & \leq p_{1}^{*} \omega_{1}^{i}+p_{2}^{*} \omega_{2}^{i}
\end{aligned}
$$

- All markets clear:

$$
x_{j}^{1 *}+x_{j}^{2 *} \leq \omega_{j}^{1}+\omega_{j}^{2} \text { for all } j .
$$

- Compare with partial (Marshallian) equilibrium:
- each consumer maximizes utility
- market for good i clears.
- (no requirement that all markets clear)
- How do we find the Walrasian Equilibria?

- Graphical method.

1. Compute first for each consumer set of utilitymaximizing points as function of prices
2. Check that market-clearing condition holds

- Step 1. Compute optimal points as prices p_{1} and p_{2} vary
- Start with Consumer 1. Find points of tangency between budget sets and indifference curves
- Figure
- Offer curve for consumer 1 :

$$
\left(x_{1}^{1 *}\left(p_{1}, p_{2},\left(\omega_{1}, \omega_{2}\right)\right), x_{2}^{1 *}\left(p_{1}, p_{2},\left(\omega_{1}, \omega_{2}\right)\right)\right)
$$

- Offer curve is set of points that maximize utility as function of prices p_{1} and p_{2}.
- Then find offer curve for consumer 2 :

$$
\left(x_{1}^{2 *}\left(p_{1}, p_{2},\left(\omega_{1}, \omega_{2}\right)\right), x_{2}^{2 *}\left(p_{1}, p_{2},\left(\omega_{1}, \omega_{2}\right)\right)\right)
$$

- Figure
- Step 2. Find intersection(s) of two offer curves
- Walrasian Equilibrium is intersection of the two offer curves!
- Both individuals maximize utility given prices
- Total quantity demanded equals total endowment
- Relate Walrasian Equilibrium to barter equilbrium.
- Walrasian Equilibrium is a subset of barter equilibrium:
- Does WE satisfy Individual Rationality condition?
- Does WE satisfy the Pareto Efficiency condition?
- Walrasian Equilibrium therefore picks one (or more) point(s) on contract curve.

5 Next lecture

- Example of Walrasian Equilibrium
- Theorems on welfare

