Economics 101A (Lecture 22)

Stefano DellaVigna

April 17, 2008

Outline

- 1. Game Theory II
- 2. Oligopoly: Cournot
- 3. Oligopoly: Bertrand

1 Game Theory II

• Penalty kick in soccer (matching pennies)

$Kicker \setminus Goalie$	L	R
L	0, 1	1, 0
R	1,0	0,1

- Kicker kicks left with probability \boldsymbol{k}
- Goalie kicks left with probability g
- utility for kicker of playing L :

$$egin{array}{rcl} U_K(L,\sigma) &=& g U_K(L,L) + (1-g) \, U_K(L,R) \ &=& (1-g) \end{array}$$

– utility for kicker of playing R :

$$U_K(R,\sigma) = gU_K(R,L) + (1-g)U_K(R,R)$$

= g

• Optimum?

$$-L \succ R \text{ if } 1 - g > g \text{ or } g < 1/2$$
$$-R \succ L \text{ if } 1 - g < g \text{ or } g > 1/2$$
$$-L \sim R \text{ if } 1 - g = g \text{ or } g = 1/2$$

• Plot best response for kicker

• Plot best response for goalie

- Nash Equilibrium is:
 - fixed point of best response correspondence

- crossing of best response correspondences

2 Oligopoly: Cournot

- Nicholson, Ch. 14, pp. 524-530 (*better* than Ch. 14, pp. 418–419, 421–422, 9th)
- Back to oligopoly maximization problem
- Assume 2 firms, cost $c_i(y_i) = cy_i, i = 1, 2$
- Firms choose simultaneously quantity y_i
- Firm *i* maximizes:

$$\max_{y_i} p\left(y_i + y_{-i}\right) y_i - c y_i.$$

• First order condition with respect to y_i :

$$p'_{Y}\left(y_{i}^{*}+y_{-i}^{*}\right)y_{i}^{*}+p-c=\mathsf{0},\,\,i=\mathsf{1},\mathsf{2}.$$

- Nash equilibrium:
 - y_1 optimal given y_2 ;
 - y_2 optimal given y_1 .
- Solve equations:

$$p_Y^\prime \left(y_1^st + y_2^st
ight) y_1^st + p - c = {\sf 0}$$
 and $p_Y^\prime \left(y_2^st + y_1^st
ight) y_2^st + p - c = {\sf 0}.$

• Cournot -> Pricing above marginal cost

3 Oligopoly: Bertrand

- Cournot oligopoly: firms choose quantities
- Bertrand oligolpoly: firms first choose prices, and then produce quantity demanded by market
- Market demand function Y(p)
- 2 firms
- Profits:

$$\pi_{i}(p_{i}, p_{-i}) = \begin{cases} (p_{i} - c) Y(p_{i}) & \text{if } p_{i} < p_{-i} \\ (p_{i} - c) Y(p_{i}) / 2 & \text{if } p_{i} = p_{-i} \\ 0 & \text{if } p_{i} > p_{-i} \end{cases}$$

• First show that $p_1 = c = p_2$ is Nash Equilibrium

- Does any firm have a (strict) incentive to deviate?
- Check profits for Firm 1

• Symmetric argument for Firm 2

- Second, show that this equilibrium is unique.
- For each of the next 5 cases at least on firm has a profitable deviation
- Case 1. $p_1 > p_2 > c$

• Case 2. $p_1 = p_2 > c$

• Case 3. $p_1 > c \ge p_2$

• Case 4. $c > p_1 \ge p_2$

• Case 5. $p_1 = c > p_2$

- Only Case 6 remains: $p_1 = c = p_2$, which is Nash Equilibrium
- It is unique!

- Notice:
- To show that something is an equilibrium -> Show that there is *no* profitable deviation
- To show that something is *not* an equilibrium ->
 Show that there is *one* profitable deviation

- Surprising result of Bertrand Competition
- Marginal cost pricing

• Two firms are enough to guarantee perfect competition!

• Realistic? Price wars between PC makers

4 Next lecture

- Auctions
- Dynamic Games
- Stackelberg duopoly