Economics 101A (Lecture 22)

Stefano DellaVigna

April 17, 2008

Outline

1. Game Theory II

2. Oligopoly: Cournot
3. Oligopoly: Bertrand

1 Game Theory II

- Penalty kick in soccer (matching pennies)

- Kicker kicks left with probability k
- Goalie kicks left with probability g
- utility for kicker of playing L :

$$
\begin{aligned}
U_{K}(L, \sigma) & =g U_{K}(L, L)+(1-g) U_{K}(L, R) \\
& =(1-g)
\end{aligned}
$$

- utility for kicker of playing R :

$$
\begin{aligned}
U_{K}(R, \sigma) & =g U_{K}(R, L)+(1-g) U_{K}(R, R) \\
& =g
\end{aligned}
$$

- Optimum?

$$
\begin{aligned}
& -L \succ R \text { if } 1-g>g \text { or } g<1 / 2 \\
& -R \succ L \text { if } 1-g<g \text { or } g>1 / 2 \\
& -L \sim R \text { if } 1-g=g \text { or } g=1 / 2
\end{aligned}
$$

- Plot best response for kicker
- Plot best response for goalie
- Nash Equilibrium is:
- fixed point of best response correspondence
- crossing of best response correspondences

2 Oligopoly: Cournot

- Nicholson, Ch. 14, pp. 524-530 (better than Ch. 14, pp. 418-419, 421-422, 9th)
- Back to oligopoly maximization problem
- Assume 2 firms, cost $c_{i}\left(y_{i}\right)=c y_{i}, i=1,2$
- Firms choose simultaneously quantity y_{i}
- Firm i maximizes:

$$
\max _{y_{i}} p\left(y_{i}+y_{-i}\right) y_{i}-c y_{i} .
$$

- First order condition with respect to y_{i} :

$$
p_{Y}^{\prime}\left(y_{i}^{*}+y_{-i}^{*}\right) y_{i}^{*}+p-c=0, i=1,2 .
$$

- Nash equilibrium:
- y_{1} optimal given y_{2};
- y_{2} optimal given y_{1}.
- Solve equations:

$$
\begin{gathered}
p_{Y}^{\prime}\left(y_{1}^{*}+y_{2}^{*}\right) y_{1}^{*}+p-c=0 \text { and } \\
p_{Y}^{\prime}\left(y_{2}^{*}+y_{1}^{*}\right) y_{2}^{*}+p-c=0 .
\end{gathered}
$$

- Cournot -> Pricing above marginal cost

3 Oligopoly: Bertrand

- Cournot oligopoly: firms choose quantities
- Bertrand oligolpoly: firms first choose prices, and then produce quantity demanded by market
- Market demand function $Y(p)$
- 2 firms
- Profits:

$$
\pi_{i}\left(p_{i}, p_{-i}\right)=\left\{\begin{array}{ccc}
\left(p_{i}-c\right) Y\left(p_{i}\right) & \text { if } & p_{i}<p_{-i} \\
\left(p_{i}-c\right) Y\left(p_{i}\right) / 2 & \text { if } & p_{i}=p_{-i} \\
0 & \text { if } & p_{i}>p_{-i}
\end{array}\right.
$$

- First show that $p_{1}=c=p_{2}$ is Nash Equilibrium
- Does any firm have a (strict) incentive to deviate?
- Check profits for Firm 1
- Symmetric argument for Firm 2
- Second, show that this equilibrium is unique.
- For each of the next 5 cases at least on firm has a profitable deviation
- Case 1. $p_{1}>p_{2}>c$
- Case 2. $p_{1}=p_{2}>c$
- Case 3. $p_{1}>c \geq p_{2}$
- Case 4. $c>p_{1} \geq p_{2}$
- Case 5. $p_{1}=c>p_{2}$
- Only Case 6 remains: $p_{1}=c=p_{2}$, which is Nash Equilibrium
- It is unique!
- Notice:
- To show that something is an equilibrium $->$ Show that there is *no* profitable deviation
- To show that something is *not* an equilibrium $->$ Show that there is *one* profitable deviation

- Surprising result of Bertrand Competition

- Marginal cost pricing
- Two firms are enough to guarantee perfect competition!
- Realistic? Price wars between PC makers

4 Next lecture

- Auctions
- Dynamic Games
- Stackelberg duopoly

