Economics 101A (Lecture 6)

Stefano DellaVigna

February 7, 2008

Outline

- 1. From Preferences to Utility (continued)
- 2. Common Utility Functions
- 3. Utility maximization
- 4. Utility maximization Tricky Cases

1 From preferences to utility

- Nicholson, Ch. 3
- ullet Economists like to use utility functions $u:X\to R$
- u(x) is 'liking' of good x
- u(a) > u(b) means: I prefer a to b.
- **Def.** Utility function u represents preferences \succeq if, for all x and y in X, $x \succeq y$ if and only if $u(x) \ge u(y)$.
- **Theorem.** If preference relation \succeq is rational and continuous, there exists a continuous utility function $u: X \to R$ that represents it.

- [Skip proof]
- Example:

$$(x_1, x_2) \succeq (y_1, y_2)$$
 iff $x_1 + x_2 \geq y_1 + y_2$

• Draw:

- Utility function that represents it: $u(x) = x_1 + x_2$
- ullet But... Utility function representing \succeq is not unique
- Take 3u(x) or exp(u(x))
- $u(a) > u(b) \iff \exp(u(a)) > \exp(u(b))$

• If u(x) represents preferences \succeq and f is a strictly increasing function, then f(u(x)) represents \succeq as well.

- If preferences are represented from a utility function, are they rational?
 - completeness
 - transitivity

- Indifference curves: $u(x_1, x_2) = \bar{u}$
- They are just implicit functions! $u(x_1, x_2) \bar{u} = 0$

$$\frac{dx_2}{dx_1} = -\frac{U'_{x_1}}{U'_{x_2}} = MRS$$

- Indifference curves for:
 - monotonic preferences;
 - strictly monotonic preferences;
 - convex preferences

2 Common utility functions

- Nicholson, Ch. 3, pp. 100-104 (82-86, 9th)
- 1. Cobb-Douglas preferences: $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$
 - $MRS = -\alpha x_1^{a-1} x_2^{1-\alpha} / (1-a) x_1^{\alpha} x_2^{-\alpha} = \frac{\alpha}{1-\alpha} \frac{x_2}{x_1}$

- 2. Perfect substitutes: $u(x_1, x_2) = \alpha x_1 + \beta x_2$
 - $MRS = -\alpha/\beta$

- 3. Perfect complements: $u(x_1, x_2) = \min(\alpha x_1, \beta x_2)$
 - MRS discontinuous at $x_2 = \frac{\alpha}{\beta}x_1$

- 4. Constant Elasticity of Substitution: $u\left(x_1,x_2\right)=\left(\alpha x_1^{\rho}+\beta x_2^{\rho}\right)^{1/\rho}$
 - $MRS = -\frac{\alpha}{\beta} \left(\frac{x_1}{x_2}\right)^{\rho-1}$
 - ullet if ho=1, then...
 - if $\rho = 0$, then...
 - if $\rho \to -\infty$, then...

3 Utility Maximization

- Nicholson, Ch. 4, pp. 114-124 (94-105, 9th)
- $X = R_+^2$ (2 goods)
- Consumers: choose bundle $x = (x_1, x_2)$ in X which yields highest utility.
- Constraint: income = M
- Price of good $1 = p_1$, price of good $2 = p_2$
- Bundle x is feasible if $p_1x_1 + p_2x_2 \leq M$
- Consumer maximizes

$$\max_{x_1, x_2} u(x_1, x_2)$$

$$s.t. \ p_1x_1 + p_2x_2 \le M$$

$$x_1 \ge 0, \ x_2 \ge 0$$

- Maximization subject to inequality. How do we solve that?
- Trick: u strictly increasing in at least one dimension.
 (≥ strictly monotonic)
- Budget constraint always satisfied with equality

• Ignore temporarily $x_1 \ge 0$, $x_2 \ge 0$ and check afterwards that they are satisfied for x_1^* and x_2^* .

• Problem becomes

$$\max_{x_1, x_2} u(x_1, x_2)$$
s.t. $p_1x_1 + p_2x_2 - M = 0$

•
$$L(x_1, x_2) = u(x_1, x_2) - \lambda(p_1x_1 + p_2x_2 = M)$$

• F.o.c.s:

$$u'_{x_i} - \lambda p_i = \mathbf{0} \text{ for } i = 1, 2$$

$$p_1 x_1 + p_2 x_2 - M = \mathbf{0}$$

• Moving the two terms across and dividing, we get:

$$MRS = -\frac{u'_{x_1}}{u'_{x_2}} = -\frac{p_1}{p_2}$$

• Graphical interpretation.

Second order conditions:

$$H = \begin{pmatrix} 0 & -p_1 & -p_2 \\ -p_1 & u_{x_1,x_1}^{"} & u_{x_1,x_2}^{"} \\ -p_2 & u_{x_2,x_1}^{"} & u_{x_2,x_2}^{"} \end{pmatrix}$$

$$|H| = p_1 \left(-p_1 u_{x_2, x_2}^{"} + p_2 u_{x_2, x_1}^{"} \right)$$

$$-p_2 \left(-p_1 u_{x_1, x_2}^{"} + p_2 u_{x_1, x_1}^{"} \right)$$

$$= -p_1^2 u_{x_2, x_2}^{"} + 2p_1 p_2 u_{x_1, x_2}^{"} - p_2^2 u_{x_1, x_1}^{"}$$

- Notice: $u_{x_2,x_2}'' < 0$ and $u_{x_1,x_1}'' < 0$ usually satisfied (but check it!).
- Condition $u_{x_1,x_2}^{\prime\prime}>0$ is then sufficient

• Example with CES utility function.

$$\max_{x_1, x_2} \left(\alpha x_1^{\rho} + \beta x_2^{\rho} \right)^{1/\rho}$$
 s.t. $p_1 x_1 + p_2 x_2 - M = 0$

- Lagrangean =
- F.o.c.:

• Special case: $\rho = 0$ (Cobb-Douglas)

4 Utility maximization – tricky cases

1. Non-convex preferences. Example:

• Example with CES utility function.

$$\max_{x_1, x_2} \left(\alpha x_1^{\rho} + \beta x_2^{\rho} \right)^{1/\rho}$$
s.t. $p_1 x_1 + p_2 x_2 - M = 0$

- With $\rho > 1$ the interior solution is a minimum!
- ullet Draw indifference curves for ho=1 (boundary case) and ho=2

Can also check using second order conditions

2. Solution does not satisfy $x_1^* > 0$ or $x_2^* > 0$. Example:

$$\max x_1 * (x_2 + 5)$$
s.t. $p_1x_1 + p_2x_2 = M$

ullet In this case consider corner conditions: what happens for $x_1^*=$ 0? And $x_2^*=$ 0?

3. Multiplicity of solutions. Example:

• Convex preferences that are not strictly convex

5 Next Class

- Indirect Utility Function
- Comparative Statics:
 - with respect to price
 - with respect to income