# Economics 101A (Lecture 14) 

Stefano DellaVigna

March 11, 2008

## Outline

## 1. Time Consistency II

2. Time Inconsistency
3. Health Club Attendance
4. Production: Introduction

## 5. Production Function

## 1 Time Consistency II

- Time consistency. Plans for future coincide with future actions.
- To see why, rewrite utility function $u\left(c_{0}, c_{1}, c_{2}\right)$ :

$$
\begin{aligned}
& U\left(c_{0}\right)+\frac{1}{1+\delta} U\left(c_{1}\right)+\frac{1}{(1+\delta)^{2}} E U\left(c_{2}\right) \\
= & U\left(c_{0}\right)+\frac{1}{1+\delta}\left[U\left(c_{1}\right)+\frac{1}{1+\delta} E U\left(c_{2}\right)\right]
\end{aligned}
$$

- Expression in brackets coincides with utility at $t=1$
- Is time consistency right?
- addictive products (alcohol, drugs);
- good actions (exercising, helping friends);
- immediate gratification (shopping, credit card borrowing)


## 2 Time Inconsistency

- Alternative specification (Akerlof, 1991; Laibson, 1997; O'Donoghue and Rabin, 1999)
- Utility at time $t$ is $u\left(c_{t}, c_{t+1}, c_{t+2}\right)$ :

$$
u\left(c_{t}\right)+\frac{\beta}{1+\delta} u\left(c_{t+1}\right)+\frac{\beta}{(1+\delta)^{2}} u\left(c_{t+2}\right)+\ldots
$$

- Discount factor is

$$
1, \frac{\beta}{1+\delta}, \frac{\beta}{(1+\delta)^{2}}, \frac{\beta}{(1+\delta)^{3}}, \ldots
$$

instead of

$$
1, \frac{1}{1+\delta}, \frac{1}{(1+\delta)^{2}}, \frac{1}{(1+\delta)^{3}}, \ldots
$$

- What is the difference?
- Immediate gratification: $\beta<1$
- Back to our problem: Period 1.
- Maximization problem:

$$
\begin{aligned}
& \max U\left(c_{1}\right)+\frac{\beta}{1+\delta} E U\left(c_{2}\right) \\
& \text { s.t. } c_{1}+\frac{1}{1+r} c_{2} \leq M_{1}^{\prime}+\frac{1}{1+r} M_{2}
\end{aligned}
$$

- First order conditions:
- Ratio of f.o.c.s:

$$
\frac{U^{\prime}\left(c_{1}^{*}\right)}{E U^{\prime}\left(c_{2}^{*}\right)}=\beta \frac{1+r}{1+\delta}
$$

- Now, period 0 with commitment.
- Maximization problem:

$$
\begin{aligned}
& \max U\left(c_{0}\right)+\frac{\beta}{1+\delta} U\left(c_{1}\right)+\frac{\beta}{(1+\delta)^{2}} E U\left(c_{2}\right) \\
& \text { s.t. } c_{1}+\frac{1}{1+r} c_{2} \leq M_{1}^{\prime}+\frac{1}{1+r} M_{2}
\end{aligned}
$$

- First order conditions:
- Ratio of f.o.c.s:

$$
\frac{U^{\prime}\left(c_{1}^{*, c}\right)}{E U^{\prime}\left(c_{2}^{*, c}\right)}=\frac{1+r}{1+\delta}
$$

- The two conditions differ!
- Time inconsistency: $c_{1}^{*, c}<c_{1}^{*}$ and $c_{2}^{*, c}>c_{2}^{*}$
- The agent allows him/herself too much immediate consumption and saves too little
- Ok, we agree. but should we study this as economists?
- YES!
- One trillion dollars in credit card debt;
- Most debt is in teaser rates;
- Two thirds of Americans are overwight or obese;
- \$10bn health-club industry
- Is this testable?
- In the laboratory?
- In the field?


## 3 Health Club Attendance

- Health club industry study (DellaVigna and Malmendier, 2002)
- 3 health clubs
- Data on attendance from swiping cards
- Choice of contracts:
- Monthly contract with average price of $\$ 75$
- 10-visit pass for $\$ 100$
- Consider users that choose monthly contract. Attendance?

Table 3-Price per Average Attendance at Enrollment

|  | Sample: No subsidy, all clubs |  |  |
| :---: | :---: | :---: | :---: |
|  | Average price per month (1) | Average attendance per month <br> (2) | Average price per average attendance (3) |
|  | Users initially enrolled with a monthly contract |  |  |
| Month 1 | $\begin{gathered} 55.23 \\ (0.80) \\ N=829 \end{gathered}$ | $\begin{gathered} 3.45 \\ (0.13) \\ N=829 \end{gathered}$ | $\begin{gathered} 16.01 \\ (0.66) \\ N=829 \end{gathered}$ |
| Month 2 | $\begin{gathered} 80.65 \\ (0.45) \\ N=758 \end{gathered}$ | $\begin{gathered} 5.46 \\ (0.19) \\ N=758 \end{gathered}$ | $\begin{gathered} 14.76 \\ (0.52) \\ N=758 \end{gathered}$ |
| Month 3 | $\begin{gathered} 70.18 \\ (1.05) \\ N=753 \end{gathered}$ | $\begin{gathered} 4.89 \\ (0.18) \\ N=753 \end{gathered}$ | $\begin{gathered} 14.34 \\ (0.58) \\ N=753 \end{gathered}$ |
| Month 4 | $\begin{gathered} 81.79 \\ (0.26) \\ N=728 \end{gathered}$ | $\begin{gathered} 4.57 \\ (0.19) \\ N=728 \end{gathered}$ | $\begin{gathered} 17.89 \\ (0.75) \\ N=728 \end{gathered}$ |
| Month 5 | $\begin{gathered} 81.93 \\ (0.25) \\ N=701 \end{gathered}$ | $\begin{gathered} 4.42 \\ (0.19) \\ N=701 \end{gathered}$ | $\begin{gathered} 18.53 \\ (0.80) \\ N=701 \end{gathered}$ |
| Month 6 | $\begin{gathered} 81.94 \\ (0.29) \\ N=607 \end{gathered}$ | $\begin{gathered} 4.32 \\ (0.19) \\ N=607 \end{gathered}$ | $\begin{gathered} 18.95 \\ (0.84) \\ N=607 \end{gathered}$ |
| Months 1 to 6 | $\begin{gathered} 75.26 \\ (0.27) \\ N=866 \end{gathered}$ | $\begin{gathered} 4.36 \\ (0.14) \\ N=866 \end{gathered}$ | $\begin{gathered} 17.27 \\ (0.54) \\ N=866 \end{gathered}$ |

Users initially enrolled with an annual contract, who joined at least 14 months before the end of sample period

| Year 1 | 66.32 | 4.36 | 15.22 |
| :---: | :---: | :---: | :---: |
|  | $(0.37)$ | $(0.36)$ | $(1.25)$ |
|  | $N=145$ | $N=145$ | $N=145$ |

## - Attend on average 4.8 times per month

- Pay on average over $\$ 17$
B. Price per average attendance
(Monthly contracts with monthly fee $\geq \mathbf{\$ 7 0}$ )

- Average delay of 2.2 months ( $\$ 185$ ) between last attendance and contract termination
- Over membership, user could have saved $\$ 700$ by paying per visit
- Health club attendance:
- immediate cost $c$
- delayed benefit $b$
- At sign-up (attend tomorrow):

$$
N B^{t}=-\frac{\beta}{1+\delta} c+\frac{\beta}{(1+\delta)^{2}} b
$$

- Plan to attend if $N B^{t}>0$

$$
c<\frac{1}{(1+\delta)} b
$$

- Once moment to attend comes:

$$
N B=-c+\frac{\beta}{(1+\delta)} b
$$

- Attend if $N B>0$

$$
c<\frac{\beta}{(1+\delta)} b
$$

## - Interpretations?

- Users are buying a commitment device
- User underestimate their future self-control problems:
- They overestimate future attendance
- They delay cancellation


## 4 Production: Introduction

- Second half of the economy. Production
- Example. Ford and the Minivan (Petrin, 2002):
- Ford had idea: "Mini/Max" (early '70s)
- Did Ford produce it?
- No!
- Ford was worried of cannibalizing station wagon sector
- Chrysler introduces Dodge Caravan (1984)
- Chrysler: $\$ 1.5$ bn profits (by 1987)!
- Why need separate treatment?
- Perhaps firms maximize utility...
- ...we can be more precise:
- Competition
- Institutional structure


## 5 Production Function

- Nicholson, Ch. 7, pp. (183-190; 195-200, 9th)
- Production function: $y=f(\mathbf{z})$. Function $f: R_{+}^{n} \rightarrow$ $R_{+}$
- Inputs $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ : labor, capital, land, human capital
- Output y: Minivan, Intel Pentium III, mangoes (Philippines)
- Properties of $f$ :
- no free lunches: $f(0)=0$
- positive marginal productivity: $f_{i}^{\prime}(\mathbf{z})>0$
- decreasing marginal productivity: $f_{i, i}^{\prime \prime}(\mathbf{z})<0$
- Isoquants $Q(y)=\{\mathbf{x} \mid f(\mathbf{x})=y\}$
- Set of inputs $\mathbf{z}$ required to produce quantity $y$
- Special case. Two inputs:
- $z_{1}=L$ (labor)
$-z_{2}=K$ (capital)
- Isoquant: $f(L, K)-y=0$
- Slope of isoquant $d K / d L=M R T S$


# - Convex production function if convex isoquants 

- Reasonable: combine two technologies and do better!
- Mathematically, $d^{2} K / d^{2} L=$


## 6 Next Lecture

- Two-Step Cost Minimization
- Solve an Example
- Cases in which s.o.c. are not satisfied
- Start Profit Maximization

