Economics 101A (Lecture 21)

Stefano DellaVigna

April 15, 2008

Outline

1. Price Discrimination II

2. Oligopoly?

3. Game Theory

4. Oligopoly: Cournot

1 Price Discrimination II

1.1 Segmented markets

- Firm now separates markets
- Within market, charges constant per-unit price
- Example:
- cost function $T C(y)=c y$.
- Market A: inverse demand dunction $p_{A}(y)$ or
- Market B: inverse dunction $p_{B}(y)$
- Profit maximization problem:

$$
\max _{y_{A}, y_{B}} p_{A}\left(y_{A}\right) y_{A}+p_{B}\left(y_{B}\right) y_{B}-c\left(y_{A}+y_{B}\right)
$$

- First order conditions:
- Elasticity interpretation
- Firm charges more to markets with lower elasticity
- Examples:
- student discounts
- prices of goods across countries:
* airlines (US and Europe)
* books (US and UK)
* cars (Europe)
* drugs (US vs. Canada vs. Africa)
- As markets integrate (Internet), less possible to do the latter

2 Oligopoly?

- Extremes:
- Perfect competition
- Monopoly
- Oligopoly if there are n (two, five...) firms
- Examples:
- soft drinks: Coke, Pepsi;
- cellular phones: Sprint, AT\&T, Cingular,...
- car dealers
- Firm i maximizes:

$$
\max _{y_{i}} p\left(y_{i}+y_{-i}\right) y_{i}-c\left(y_{i}\right)
$$

where $y_{-i}=\sum_{j \neq i} y_{j}$.

- First order condition with respect to y_{i} :

$$
p_{Y}^{\prime}\left(y_{i}+y_{-i}\right) y_{i}+p-c_{y}^{\prime}\left(y_{i}\right)=0
$$

- Problem: what is the value of y_{-i} ?
- simultaneous determination?
- can firms $-i$ observe y_{i} ?
- Need to study strategic interaction

3 Game Theory

- Nicholson, Ch. 8, pp. 236-252 (better than Ch. 15, pp. 440-449, 9th).
- Unfortunate name
- Game theory: study of decisions when payoff of player i depends on actions of player j.
- Brief history:
- von Neuman and Morgenstern, Theory of Games and Economic Behavior (1944)
- Nash, Non-cooperative Games (1951)
- ...
- Nobel Prize to Nash, Harsanyi (Berkeley), Selten (1994)

- Definitions:

- Players: $1, \ldots, I$
- Strategy $s_{i} \in S_{i}$
- Payoffs: $U_{i}\left(s_{i}, s_{-i}\right)$
- Example: Prisoner's Dilemma
$-I=2$
$-s_{i}=\{D, N D\}$
- Payoffs matrix:

$$
\begin{array}{ccc}
1 \backslash 2 & D & N D \\
D & -4,-4 & -1,-5 \\
N D & -5,-1 & -2,-2
\end{array}
$$

- What prediction?
- Maximize sum of payoffs?
- Choose dominant strategies
- Equilibrium in dominant stategies
- Strategies $s^{*}=\left(s_{i}^{*}, s_{-i}^{*}\right)$ are an Equilibrium in dominant stategies if

$$
U_{i}\left(s_{i}^{*}, s_{-i}\right) \geq U_{i}\left(s_{i}, s_{-i}\right)
$$

for all $s_{i} \in S_{i}$, for all $s_{-i} \in S_{-i}$ and all $i=1, \ldots, I$

- Battle of the Sexes game:

He \She Ballet Football
Ballet 2,1 0,0
Football $0,0 \quad 1,2$

- Choose dominant strategies? Do not exist
- Nash Equilibrium.
- Strategies $s^{*}=\left(s_{i}^{*}, s_{-i}^{*}\right)$ are a Nash Equilibrium if

$$
U_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geq U_{i}\left(s_{i}, s_{-i}^{*}\right)
$$

for all $s_{i} \in S_{i}$ and $i=1, \ldots, I$

- Is Nash Equilibrium unique?

- Does it always exist?
- Penalty kick in soccer (matching pennies)

- Equilibrium always exists in mixed strategies σ
- Mixed strategy: allow for probability distibution.
- Back to penalty kick:
- Kicker kicks left with probability k
- Goalie kicks left with probability g
- utility for kicker of playing L :

$$
\begin{aligned}
U_{K}(L, \sigma) & =g U_{K}(L, L)+(1-g) U_{K}(L, R) \\
& =(1-g)
\end{aligned}
$$

- utility for kicker of playing R :

$$
\begin{aligned}
U_{K}(R, \sigma) & =g U_{K}(R, L)+(1-g) U_{K}(R, R) \\
& =g
\end{aligned}
$$

- Optimum?

$$
\begin{aligned}
& -L \succ R \text { if } 1-g>g \text { or } g<1 / 2 \\
& -R \succ L \text { if } 1-g<g \text { or } g>1 / 2 \\
& -L \sim R \text { if } 1-g=g \text { or } g=1 / 2
\end{aligned}
$$

- Plot best response for kicker
- Plot best response for goalie
- Nash Equilibrium is:
- fixed point of best response correspondence
- crossing of best response correspondences

4 Oligopoly: Cournot

- Nicholson, Ch. 14, pp. 524-530 (better than Ch. 14, pp. 418-419, 421-422, 9th)
- Back to oligopoly maximization problem
- Assume 2 firms, cost $c_{i}\left(y_{i}\right)=c y_{i}, i=1,2$
- Firms choose simultaneously quantity y_{i}
- Firm i maximizes:

$$
\max _{y_{i}} p\left(y_{i}+y_{-i}\right) y_{i}-c y_{i} .
$$

- First order condition with respect to y_{i} :

$$
p_{Y}^{\prime}\left(y_{i}^{*}+y_{-i}^{*}\right) y_{i}^{*}+p-c=0, i=1,2
$$

- Nash equilibrium:
- y_{1} optimal given y_{2};
- y_{2} optimal given y_{1}.
- Solve equations:

$$
\begin{gathered}
p_{Y}^{\prime}\left(y_{1}^{*}+y_{2}^{*}\right) y_{1}^{*}+p-c=0 \text { and } \\
p_{Y}^{\prime}\left(y_{2}^{*}+y_{1}^{*}\right) y_{2}^{*}+p-c=0 .
\end{gathered}
$$

- Cournot -> Pricing above marginal cost

5 Next lecture

- Oligopoly: Bertrand
- Dynamic games
- Stackelberg duopoly
- Auctions

